Category Archives: Hydrography

OCEANS seabed in 3D ~ download P3D’s Demo &/or Trial (Full)

P3D ~ in Russian

P3D in Ru========================

FVs @ Sea with OCEAN3D

O3D ~ rkV1

—-

O3D ~ Trawler in Okhotsk Sea


ИСПОЛЬЗОВАНИЕ ОКЕАН3Д ПРИ ВЕДЕНИИ ГЛУБОКОВОДНЫХ ТРАЛЕНИЙ ПО СКЛОНАМ ПОДВОДНЫХ ГОР В ОКЕАНЕ, СВАЛАМ, и В ПРИБРЕЖНЫХ ЩЕЛЬФОВЫХ РАЙОНАХ НА ГЛУБИНАХ 500 М – 2,500 М

Over Hill Tow

=========================

P3D ~ in English

P3D in En

=========================

ИСПОЛЬЗОВАНИЕ ОКЕАН3Д ПРИ ВЕДЕНИИ ГЛУБОКОВОДНЫХ ТРАЛЕНИЙ ПО СКЛОНАМ ПОДВОДНЫХ ГОР В ОКЕАНЕ, СВАЛАМ, и В ПРИБРЕЖНЫХ ЩЕЛЬФОВЫХ РАЙОНАХ НА ГЛУБИНАХ 500 М – 2,500 М

================================

Download P3D-DEMO-29Mb

==========================

Загрузка установочного файла демонстрационной версии программы P3D возможна @  P3D-DEMO ~ 29 Mb

Download P3D-60 days TRIAL

Загрузка установочных файлов “ПРОБНОЙ” version ~ (програмmноe обеспечениe и базовыe данныe глубин )

 P3D~Больший вылов За Меньшее Время
60-дневной версии программы P3D (полная программа, но ограниченная только по времени ~период использования=60 дней) возможна @ P3D ~ пробная 60-дневная версия программа ~ 681 Mb

над пропастью, по самому по краю ...

Download Backgound Depths Data

Базовые данные глубин  ~  1,585 Mb

Программа для проверки возмоможностей графики компьютера где предполагается установка полной или пробной версий программы “P3D” – 4 Mb

================================

Тайны морских глубин

75% поверхности планеты ОКЕАНов,- сегодня это мир неизвестности

DRAIN the OCEANS

Digital ocean mapping and CGI technology vividly illustrate the mountains, plains, canyons and creatures of the deep as never seen before, revealing a world of almost unimaginable scale right here on Earth. The oceans cover three-quarters of our planet, hiding a whole other world beneath the waves. If we could pull an imaginary plug at the bottom of the sea and, layer by layer, expose the majesty and mystery of what lies beneath, we would be astounded. Drain the Ocean reveals the longest mountain range (65,000 kilometers!); the deepest point on Earth; the largest stretch of flat plains; and psychedelic bio-luminescent life forms that look like Hollywood aliens.

3d.png

===================================================

Экспедиции исследований и картографии дна океана (США,Канада) – 2017

========================

E-mail: OCEAN3Dprojects@gmail.com

RESEARCH ON UPWELLING in the US & RU

RESEARCH ON UPWELLING

New research on upwelling that drives US west coast marine ecosystem. Scientists have described new “upwelling indices,” which represent a breakthrough in understanding the biological engine that drives the West Coast of North American marine ecosystem.

Great volumes of nutrient-rich water welling up from the deep ocean fuel the West Coast’s great diversity of marine life. Now scientists using satellite images, research buoys, ocean models, and other ocean monitoring tools have brought the upwelling into much sharper focus, measuring even the velocity of the water and the amount of nutrients that it delivers.

Scientists described new “upwelling indices,” which represent a breakthrough in understanding the biological engine that drives the West Coast marine ecosystem.

“Upwelling is vital to marine life along the West Coast, but the tools we were using to monitor it hadn’t changed much in almost 50 years,” said Michael Jacox, a research scientist at NOAA Fisheries’ Southwest Fisheries Science Center who developed the new indices. “Now we’re bringing state-of-the-art tools and the latest science to bear to help us understand how upwelling supports and shapes the California Current Ecosystem.”

Given the ecological importance of upwelling, scientists and managers are eager for indices that allow them to monitor its variability and understand its impacts on coastal ocean ecosystems.

Jacox, of the Southwest Fisheries Science Center and NOAA’s Earth System Research Laboratory, and other researchers from NOAA Fisheries, and the University of California at Santa Cruz, recently published the new upwelling measurements new upwelling measurements  in the Journal of Geophysical Research: Oceans and the indices are also available online. Maps based on the indices reveal through color-coding where upwelling is most pronounced, such as off Cape Mendocino in California.

Upwelling occurs along certain coastlines around the world where winds and the Earth’s rotation sweep surface waters offshore, drawing deep, cold, and salty water full of nutrients up to the surface. These nutrients fuel growth of phytoplankton that form the base of the marine food web, and ultimately nourish the West Coast’s ocean ecosystem from sardines to sperm whales.

“We’ve never had the kind of resolution to see all this before,” said Toby Garfield, director of the Southwest Fisheries Science Center’s Environmental Research Division. “This gives us a much better understanding of the nutrient supply that’s really getting at the drivers at the base of the food chain.”

Earlier upwelling indices based on theory developed in the early 1900s relied on coarse atmospheric data. The “Bakun index”, developed by a Southwest Fisheries Science Center researcher in the early 1970’s, has long served as an instrumental resource in oceanographic and fisheries research along the West Coast. The new indices incorporate additional marine data and technological advances in ocean modeling to calculate the strength of upwelling as well as the nutrients it contributes, in 17 locations along the West Coast ~ https://fishfocus.co.uk/new-research-on-upwelling/

==========================

Upwelling Indices for the U.S. West Coast

Coastal upwelling is responsible for thriving marine ecosystems and fisheries that are disproportionately productive relative to their surface area, particularly in the world’s major eastern boundary upwelling systems …

=====================================

in RU ~ briefly by Google Translate ~  @ https://translate.google.com.au/?hl=en&tab=TT

НОВЫЕ ИССЛЕДОВАНИЯ ПО UPWELLING ~ Большие объемы богатой питательными веществами воды, поступающей из глубокого океана, питают огромное разнообразие морской жизни

Эти питательные вещества способствуют росту фитопланктона, который формирует основу морской пищевой сети, и в конечном итоге питают океаническую экосистему Западного побережья от сардин до кашалотов.

Новое исследование апвеллинга, которое движет морской экосистемой западного побережья США. Ученые описали новые «индексы апвеллинга», которые представляют собой прорыв в понимании биологического двигателя, который движет западным побережьем североамериканской морской экосистемы.

Большие объемы богатой питательными веществами воды, поступающей из глубокого океана, питают огромное разнообразие морской жизни Западного побережья. Теперь ученые, использующие спутниковые снимки, исследовательские буи, модели океана и другие инструменты мониторинга океана, привлекли внимание к апвеллингу, измеряя даже скорость воды и количество питательных веществ, которые она поставляет.

Ученые описали новые «индексы апвеллинга», которые представляют собой прорыв в понимании биологического двигателя, который управляет морской экосистемой Западного побережья.

«Апвеллинг жизненно важен для морской флоры и фауны на западном побережье, но инструменты, которые мы использовали для мониторинга, почти не изменились почти за 50 лет», – сказал Майкл Джейкс, научный сотрудник Научно-исследовательского центра рыбного хозяйства юго-запада NOAA Fisheries, который разработал новые показатели. «Теперь мы приносим самые современные инструменты и новейшие научные разработки, чтобы помочь нам понять, как апвеллинг поддерживает и формирует нынешнюю экосистему Калифорнии».

Учитывая экологическую важность апвеллинга, ученые и руководители стремятся к показателям, которые позволяют им отслеживать его изменчивость и понимать его воздействие на экосистемы прибрежных океанов.

Jacox из Юго-западного научного центра рыбного хозяйства и Лаборатории исследования системы Земли NOAA, а также другие исследователи из Рыболовного управления NOAA и Калифорнийского университета в Санта-Крузе недавно опубликовали новые измерения апвеллинга, новые измерения апвеллинга в Журнале геофизических исследований: океаны и индексы также доступны онлайн .

Карты, основанные на индексах, показывают через цветовое кодирование, где апвеллинг наиболее выражен, например, у мыса Мендосино в Калифорнии.

Апвеллинг происходит вдоль определенных береговых линий по всему миру, где ветры и вращение Земли охватывают поверхностные воды в море, вытягивая глубокую, холодную и соленую воду, полную питательных веществ, на поверхность. Эти питательные вещества способствуют росту фитопланктона, который формирует основу морской пищевой сети, и в конечном итоге питают океаническую экосистему Западного побережья от сардин до кашалотов.

«У нас никогда не было такого решения, чтобы увидеть все это раньше», – сказал Тоби Гарфилд, директор Отдела экологических исследований Юго-Западного научного центра рыбного хозяйства. «Это дает нам гораздо лучшее представление о питательных веществах, которые действительно влияют на водителей в основе пищевой цепи».

Более ранние индексы апвеллинга, основанные на теории, разработанной в начале 1900-х годов, основывались на грубых атмосферных данных. «Индекс Бакуна», разработанный исследователем из Юго-Западного научного центра рыбного хозяйства в начале 1970-х годов, долгое время служил инструментальным ресурсом в океанографических и рыбных исследованиях вдоль западного побережья. Новые индексы включают дополнительные морские данные и технологические достижения в моделировании океана для расчета силы апвеллинга, а также питательных веществ, которые он вносит, в 17 местах вдоль западного побережья.

«Картина, которую мы получаем из этих индексов, является более точной и точной, поэтому мы получаем более четкое представление о том, что движет системой», – сказал Джакокс. «Это позволяет лучше представить отношения, которые люди пытаются исследовать между динамикой океана и морской жизнью».

Например, исследователи, изучающие рыболовство или другую морскую флору и фауну, могут использовать индексы, чтобы понять, как рыба и морские млекопитающие реагируют на изменения в апвеллинге и питательных веществах в экосистеме. Индексы помогают выявить последствия изменения состояния океана у западного побережья, которое в последние годы испытывало необычайно теплые температуры, которые затронули многие виды.

================

Апвеллинг (англ. upwelling) или подъём — это процесс, при котором глубинные воды поднимаются к поверхности. Наиболее часто наблюдается у западных границ материков, где перемещает более холодные, богатые биогенами воды с глубин океана к поверхности, замещая более тёплые, бедные биогенами поверхностные воды. Также может встречаться практически в любом районе мирового океана

What is UPwelling 2

Различают как минимум четыре типа апвеллинга: прибрежный апвеллинг, крупномасштабный ветровой апвеллинг в открытом океане, апвеллинг связанный с вихрями, апвеллинг связанный с топографией.

Красным показаны районы где наиболее распространён прибрежный апвеллинг.

UPwelling Regions

Прибрежный апвеллинг — это наиболее известный тип апвеллинга, который непосредственно связан с человеческой деятельностью, поскольку поддерживает наиболее продуктивные рыболоведческие районы мирового океана. Глубинные воды богаты биогенными элементами, такими как натрий и фосфор, которые являются результатом декомпозиции погружающегося на глубину органического материала (в основном отмершего планктона). Когда глубинные воды попадают на поверхность, фитопланктон начинает активно потреблять биогены, вместе с CO 2 (диоксид углерода) и солнечной энергией, производя органические вещества в процессе фотосинтеза. Таким образом, по сравнению с другими зонами океана, в районах апвеллинга наблюдается высокая первичная продукция (количество углерода, зафиксированное фитопланктоном).

What is UPwelling

Физический механизм, приводящий к прибрежному апвеллингу, связан с силой Кориолиса, в результате действия которой Физический механизм, приводящий к прибрежному апвеллингу, связан с силой Кориолиса, в результате действия которой ветровые течения имеют тенденцию отклоняться вправо в Северном полушарии и влево в Южном полушарии.

Phisics

====================================

 

ECOsystems ~ Ecology & Security & UPwellings

ECOsystem ~ Ecology & Security

==============================

by OCEAN3Dprojects@gmail.com

ECOsystem No.50 ~ Japan Sea ~ Hydrology & Depths’ Data for seabed area in between 39 30 N ~ 40 30 N & 133 08 E ~ 135 49 E & within the limits of RU 200-miles EEZ

Fishing Vessel’s NEW Fishing Ground Research Track for the period of 1 month from 20 March 2019 to 20 April 2019 @ north of Yamato Ridge’s seabed ~ @ the central area of JAPAN SEA ~ within the limits of RU 200-miles EEZ

ECOsystem No.50 ~ Japan Sea: Hydrology, – Sea Surface TEMPERATURE ~ 12 Months’ Animation 

SSTemperature~JapanSea~12months.gif

& Sea Surface Currents ~ Speed & Diection ~ 12 Months’ Animation

SScurents~JapanSea~12months.gif

============================

Geo Grid & Depths’ Data & its Bathymetry for seabed area in between 39 30 N ~ 40 30 N & 133 08 E ~ 135 49 E ~ Northern part of Yamato Ridge’ seabed ~ JAPAN SEA ~ within the limits of RU 200-miles EEZ  ~ in computer & Ipad & Iphone

in Computer & Ipad & Iphone

OCEAN3D ~ in Computer & Ipad & Iphone ~ b.png

OCEANS’ Fishing Grounds’ Depths DATAbase & NAV’ system~ on your Iphone & Ipad & Computer

 

Japan Sea’s Seabed ~ Yamato Ridge

60100_JPGcompressed

3D ~ Seabed Columb

Geo Grid & Depths’ Data & its Bathymetry

GEOgrid & Depths Data & WaterSheds & StreamLines’ Intersections 

GEOgrid & WaterSheds & StreamLines’ Intersections & UPwellings

GEOgrid & WaterSheds & StreamLines’ Intersections & UPwellings Bathymetry

GEOgrid & Depths’ Data & Bathymetry & UPwellings in 3D

 

Geo Grid & Depths’ Data & its Bathymetry for seabed area in between 39 30 N ~ 40 30 N & 133 08 E ~ 135 49 E in Japan Sea within the limits of RU 200-miles EEZ

Click title to show track
GEOgrid & RU EEZ Border
Depths' Grid
WaterSheds & Streamlines' Intersections & UPwellings
Bathymetry

==============================

by OCEAN3Dprojects@gmail.com

Электронные “3Д” данные о глубинах океана~использование в промысловой навигации

Справочник Капитана Промыслового Судна – 1990

Краткое ОБОБЩЕНИЕ содержания страниц 224 – 232, раздела «Морская Лоция»,  Справочник Капитана Промыслового Судна, 1990 г. издания:  Картография, Пособия, Планшеты.

Рекомендации 1990 года и их использование в промысловой навигации 2016:

«Для выбора наиболее продуктивных промысловых участков рекомендуется вести наблюдение, сбор и анализ данных о районах промысла: координаты, глубины, изобаты, рельеф,- гидрография;  температура водной среды на поверхности, в пелагиали, на дне; течения: подьем глубинных шельфовых холодных вод, сезонные, региональные, приливо-отливные, гидрология; тип грунта морского дна: песок, скала, гравий, лава и его биология: водоросли, кораллы, моллюски, – среда обитания объектов промысла и её здоровье»

Slide1

Эволюция и прогресс развития рыбо-поисковых и прикладных информационных систем для промысловой навигации в районах промысла

Slide2

Северо-восток  Татарского пролива

Район промысла донными тралами

Slide5

Траловый промысел (2012-2013) в районе 47 30 – 48 55 с.ш., 141 10 – 141 34 в.д. с использованием “ОКЕАН3Д”

Slide3

Slide4

Дополненные и откорректированные данные глубин промыслового района: >>> 600,000 ~ 1,822 мили2 или  330 данных о глубинах на 1 милю2.

Отображения данных о глубинах в «3Д» и «2Д» проекциях для получения информации о возможных границах придонных водоразделов, направлениях и интенсивности приливо-отливных течений и, течений  связанных с подъемом продуктивных прибрежных \ шельфовых холодных вод 

Slide6

Карта изобат (слева внизу ) на основе только “Базовых данных ”  (цифровые данные навигационных карт района + глобальные данные батиметрии морского дна) для района 47 30 – 48 55 с.ш., 139 30 – 142 30 в.д.

Базовые изобаты района 47 30 – 48 55 с.ш., 139 30 – 142 30 в.д. + проекция  (справа)”наложенных” данных о гидрографии =>>> 600,000 = новых, дополненных и откорректированных) и навигации тралового промысла в прибрежных акваториях западнее о.Сахалин в районе ограниченного координатами 47 45 – 48 50 сш и 141 20 – 141 33 вд  

Slide5

Батиметрия района 47 30 – 48 55 с.ш., 139 30 – 142 33 в.д. на основе мировых информационных интегрированных электронных данных глубин морей и океанов ( 2012)  +  непосредственно район промысловой деятельности  (1,822 мили2) + район (для примера анализа данных глубин) данных о глубинах (48 08 – 48 13 сш и 141 21 – 141 28 вд), = 31 миля2 = 87, 000 данных о глубинах или 1 миля2 / 2,900 = как данные эхолотных промеров глубин непосредственно промысловым судном ведущим промысел в промысловом районе (без затратных $ отвлечений на непроизводительные затраты промыслового времени для изучение гидрографии промыслового района).

Галсы тралений в районе 48 08 – 48 13 сш и 141 21 – 141 28 вд), = район площадью 31 квадратная миля (миля2) = 87, 000 данных о глубинах или 1 миля2 / 2,900 эхолотных промеров глубин

Обновленная карта изобат для района тралений 48 08 – 48 13 с.ш.    и    141 21 – 141 28 в. .д, = 31 миля2 = 87, 000 обновленных данных о глубинах = 1 миля2 / 2,900 = на основе эхолотных промеров глубин промысловым судном

Slide8

Изображение рельфа дна “3Д” и “2Д” для района тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд, = 31 миля2 = 87, 000 действительных данных о глубинах ~=1 миля2 / 2,900 эхолотных промеров глубин, = с наложенными данными о галсах тралений ( курсы, изобаты, продолжительность по времени и тд )

Slide9

Изображение рельфа дна (карта изобат) в проекции 2 Д для района тралений  48 08 – 48 13 сш и 141 21 – 141 28 вд, = 31 миля2 = 87, 000 действительных данных о глубинах = 1 миля2 / 2,900 эхолотных промеров глубин = и 3Д =  рельеф дна +  карта изобат.

Slide11

Изображение рельфа дна (карта изобат) в 2Д для района тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд, – с наложенными данными о предположительном направлении и интенсивности приливо-отливных течений, и проекция этой информации в 3Д.

Slide12

Изображение рельфа дна в 3Д для района тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд, и  данные о предположительном направлении и интенсивности приливо-отливных течений.

Slide13

Изображение рельфа дна + изобаты в 3Д для района тралений  48 08 – 48 13 сш и 141 21 – 141 28 вд и  данные о предположительном направлении и интенсивности приливо-отливных течений

Slide14

Изображения “рельфа дна (2Д-изобаты)” + “карты возможных направлений и интенсивности приливо-отливных течений”  в проеккии 2Д  для района тралений  48 08 – 48 13 сш и 141 21 – 141 28 вд +  предположительная динамика подьема глубоководных продуктивных холодных вод”

Slide15

Изображение карты изобат  + возможных направлений и интенсивности приливо-отливных течений  в 2Д для района тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд= зоны стабильности (менее глубокоие районы), турбулентности (каньон  и распадок = более глубокие районы)

Slide16

Карта границ водоразделов относительно уточненных и значительно дополненных данных о рельефе морского дна, – в 2Д,-  для  промысловых тралений в районе 48 08 – 48 13 сш и 141 21 – 141 28 вд

Slide17

Изображение границ водоразделов, ИЗОБАТ и предположительной динамики подьема продуктивных холодных глубинных вод относительно уточненных и значительно дополненных данных о рельефе морского дна, – в 2Д,-  для  района промысловых тралений в раоне 48 08 – 48 13 сш и 141 21 – 141 28 вд

Slide18

Картография в 3Д рельефа дна и линий тралений.

Картография в 2Д изобат морского дна и линий тралений.

Slide21

Картография в 3Д рельефа морского дна района тралений и изобат.

Картография в 2Д изобат морского дна.

Slide22

Изображение рельефа дна в 3Д + возможная динамика направлений и интенсивности приливо-отливных течений в 2Д, включая воздействие динамики подьема глубинных вод в районе тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд

Slide23

Изображение рельефа дна в 2 Д и 3Д + возможная динамика и направления турбулентности и интенсивности приливо-отливных течений в 2Д, включая воздействие на них динамики подьема глубинных вод в районе тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд

Slide24

Изображение рельефа дна в 2 Д и 3 Д + возможная динамика направлений турбулентности и интенсивности приливо-отливных течений в 2Д, включая воздействие на них динамики подьема глубинных вод в районе тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд

Slide25

Изображение рельефа дна в 2 Д + возможная динамика и направления турбулентности и интенсивности приливо-отливных течений в 2Д, включая воздействие на них динамики подьема глубинных вод в районе тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд, относительно разного времени суток, фаз Луны и других естественных природных явлений. 

Slide26

Изображение рельефа дна в 2 Д + возможные границы водоразделов морского дна + “русла” придонных течений в районе тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд, относительно разного времени суток, фаз Луны, сезонов года, динамики и направлений подьема глубинных вод и других естественных природных явлений присходящих в среде обитания обектов промысла.

Slide27

Интенсивность течений в районе тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд, относительно разного времени суток, фаз Луны, сезонов года, динамики и направлений подьема глубинных вод и других естественных природных явлений присходящих в среде обитания обектов промысла.

Slide28

Предполагаемые “русла” придонных течений в районе тралений 48 08 – 48 13 сш и 141 21 – 141 28 вд, относительно данных о глубинах, изобатах, рельефе дна, разного времени суток, фаз Луны, сезонов года, динамики и направлений подьема глубинных вод и других естествнных природных явлений, присходящих в среде обитания объектов промысла и воздействующих на них: миграции суточные, сезоннные, нагульные, нерестовые и т.д.

Slide29

===================================================

Пример возможного использования данных о глубинах морского дна в промысловой и поисковой навигации : ветровые течения и подъем глубинных продуктивых вод

Ветер  воздействуют на движение вод морей и океана.

Эти перемещения воздушных масс известны как «бриз»  и «анти-бриз». Они воздействуют на движение  поверхностных вод в прибрежных районах и районах открытого моря и могут быть  шириной 10 – 50 км.

   001-Currents

Под воздействием “бриза” и “анти-бриза” более холодные воды поднимаются из глубин океана. Этот процесс известен как «апвеллинг».

002-UPwelling

 

«Апвеллинг» (Upwelling) происходит как в открытом океане, на шельфе, так и в прибрежных районах,- вдоль береговых линий.

Течения и ледовая обстановка в на севере Японского моря и в Охотском море за период март 2015 – март 2016

Течения и Ледовая Обстановка =Север Японского моря + Охотское море = Годовые Данные = Апрель-Март = 2015-2016

Таким образом «апвеллинг» это процесс движения вод, которые поднимаются на поверхность из глубин океана в результате воздействия ветра и течений.

Течения и ледовая обстановка в на севере Японского моря и в Охотском море за период  Март 2016

Течения и Ледовая Обстановка =Север Японского моря + Охотское море = Данные Февраль Март = 2016

Обратный «апвеллингу процесс, – «даунвеллинг» (DOWNwelling).

Вода «апвеллинга»  обычно холоднее, более насыщена питательными веществами и имеет высокую биологическую продуктивность. Более высокая динамика «апвеллинга» наблюдается в районах морских участков с наибольшими градиентами изменений глубин (изобат) относительно горизонтальных расстояний.

002-UPwelling

Лучшими по результативности  в промысловом отношении являются, как правило, те районы, где «апвеллинг» может быть постоянным явлением и морское дно имеет участки пригодные для безаварийного промысла (тралового, ярусного, сетевого, ловушечного и тд).

Более успешным промысел может быть на судах, где установлен и используется «ОКЕАН3Д», – и где возможно вести поиск наиболее продуктивных “апвеллинговых” районов и обеспечивать промысловую навигацию в них.

Это позволит экипажам:

–           улучшить знания о рельефе морского дна;

–           приобрести опыт их прикладного и эффективного                                   использования в поисковой и промысловой навигации                        применительно конкретных орудий лова (трал, ярус,                            кошелек, ловушки, сети) и определенных районов                                  промысла :

           *          сегодня и в будущем;

           *          в ходе подготовки экипажа к промыслу в береговых                               условиях оффиса судовладельца перед выходом в                               море;

          *          и, на промысле.

===================================================

Эволюция и прогресс накопления и использования информационных данных с помощью рыбо-поискового электронного и радио-навигационного оборудования промысловых судов в период 1900- 2015. 

Slide30

Развитие и использование “ОКЕАН3Д” = информационной базы данных промысловых районов одного судна и далее, – судов флота одной промысловой организации (судовладельца).

O3D=FULLpackage

Развитие и использование “ОКЕАН3Д” – территориальной и далее, –  региональной информационной базы данных промысловых районов нескольких организаций (судовладельцев)

O3D~Exchange&JOINTdata BASE

Отзывы об использовании “ОКЕАН3Д”

Slide32a

Расширение географии районов промысла за счет увеличения глубин промысла и освоения новых глубоководных объектов промысла  Slide33a

 

Акватории морских пространств северо-западной части Тихого океана: регионы Дальнего востока России. Северной и Южной Кореи, Японии, США.

Slide34a

Рыбные ресурсы северной части Тихого океана

Slide32

Электронные данные глубин основных промысловых районов тралового и ярусного промысла минтая, кальмара, терпуга, краба, макроруса, палтуса, камбалы и т.д. ( с 2006 )

Slide38

Electronic’s Hydrography in NZ & AU – видео линк

Современные электронные базы данных глубин океана в Новой Зеландии ( с 1990) и Австралии (с 2000), – развитие, прогресс, использование пользователями морских пространств: океаническое и прибрежное промышленное коммерческое рыболовство, морские рыбные фермы, морская наука, службы гидрографии, военно-морской флот, порты, морская экология, морские разведка и добыча нефти и газа,  и т.д. ~ видео – линк

Slide39

Поддрежка государством (Канада-2016) проектов развития и внедрения прикладных технологий создания и использования електронных данных цифровой трехмерной картографии дна океана 
8 Feb 2016 ~ Sonar Systems Inc. will receive a non-refundable financial contribution of up to $495,000 from the National Research Council of Canada Industrial Research Assistance Program (NRC-IRAP) for the development of the 3D system which will enable real-time seabed imagery, bathymetry and advanced 3D digital terrain models of the seabed. 8 февраля 2016 ~
“Sonar Systems Inc. ” (Канада) получает невозвращаемый финансовый вклад в размере до $ 495,000 от “Национального научно-исследовательского совета Программы помощи канадским промышленным исследованиям (СРН-МРПД)” для развития 3D-системы, которая позволит в режиме реального времени создание картографии, батиметрии и прогрессивных 3D-цифровых моделей рельефа морского дна.

SAS

Подводный мир ОКЕАНа 

видео – линк

Slide40
Japan

ГИДРОГРАФИЯ 

видео – линк

Slide41

СПОКОЙНОГО моря и Богатых Уловов !

видео – линк

Slide34

 

О глобальном проекте “100% картография морского дна,- к 2030 году”

Дорога в будущее картографии дна мирового океана

OCEANS’seabed ~ by Y 2030

Около 71% поверхности планета Земля покрыто океаном, топография (батиметрия) дна которого менее известна, чем топография таких планет солнечной системы как Меркурий, Венера, Марс и нескольких планет-спутников, включая спутник Земли (Луна).

Seabed20130~Planets

Спутниковое картографирование “сквозь” океанскую воду на глубинах дна глубже чем несколько метров исключает эффективное использование электромагнитных волн и света, которые которые формирует основу методов, используемых во время наземных и внеземных картографических миссий.

Depth & Height

В то время как высота поверхности океана, измеренная спутниками, может быть использована для получения грубого представления о дне океана, но она не имеет достаточного разрешения и точности для использования в большинстве секторов морской деятельности, будь то научные исследования, навигация, разведка и добыча ресурсов, судоходство, рыболовство и туризм.

Uncharted areas & efforts required

Традиционные методы батиметрического картографирования морского дна основаны на акустических технологиях используемых с поверхностных или подводных судов и требуют создания и привлечения широкой международной координации и сотрудничества в области ассимиляции и обобщения данных.

GEBCO2014

Во вступительном слове форума «Будущее составления карт океанов» (FFOFM) в Монако в июне 2016 года, г-н Йохе Сасакава, Председатель Фонда «Ниппон», изложил инициативу по сотрудничеству с GEBCO , чтобы на 100% увидеть картографию дна мирового океана к 2030 году на 100%.

Эта инициатива привела к формированию глобального проекта “Фонд Nippon ~ GEBCO -~ Seabed 2030”, с целенаправленной деятельностью по созданию батиметрической карты высокого разрешения дна всего мирового океана к 2030 году.

GEBCO, вмете с двумя своими “родительскими” организациями: Международной Гидрографической Организацией (МГО) и Межправительственной Океанографической Комиссией (МОК) при Организации Объединенных Наций по вопросам образования, науки и культуры (ЮНЕСКО), сотрудничая с “Фонд Nippon”, запустили проект “Seabed 2030”, совместно управляемый для расширения возможностей принятия решений мирового уровня, использования океана на устойчивой основе, проводения научных исследований на основе иформированного и подробного понимания дна  Мирового океана.

Основываясь на успешном опыте GEBCO по работе с региональными картографическими проектами, картография морского дна 2030 будет основываться на создании и использовании групп экспертов для “Сбора региональных данных в координационных центрах (RDACCs) и для Глобального сбора данных в глобальном координационном центре (GDACC).

Road to Seabed20130

Structure of Seabed2030Multybeam Bathymetry

Региональные команды будут нести ответственность за проведение региональных картографических мероприятий, а также за сбор и компиляцию батиметрической информации в пределах их региона.

Seabed2030~Regions

Глобальная команда будет отвечать за производство централизованных продуктов GEBCO и за централизованное управление данными в отношении районов не относящихся к уже обозначенным регионам.

В районах океана, где проводятся сильные картографические инициативы, проект

UNmanned mapping barge

Multibeam Control Station on Ice Breaker ODEN

Seabed 2030 будет стремиться избегать дублирования, и вместо этого, Seabed 2030 , будет работать в направлении развития тесного сотрудничества для наиболее эффективного использования глобальных ресурсов.

Multybeam Bathymetry

Эта «дорожная карта» расширяет возможности для реализации проекта Seabed 2030 и представляет: перспективу создания детализированной картографии дна океана начиная от форума проведенного в Монако в 2016 году; содержит обновленную информацию о том на какие части Мирового океана имеется картография; излагает структуру и план проекта Seabed 2030; определяет задачи и основные этапы работы.

SeaBED2030~ROADmap for Future OCEANfloor Mapping

Объявление о запуске “Глобального проекта картографии морского дна 2030, направленного на 100% -ное завершение создания карты дна Мирового океана”

DIGITAL OCEANS’ SEABED DATA BY & FROM OCEAN LTD, VLADIVOSTOK, RUSSIA

OCEAN3D (Russia) ~ OCEANShydrography (Italy) ~ EMOD (Europe) ~ NASA (USA)

 

===================================================

“FISHING GROUNDS’ HYDROGRAPHY in RUSSIAN FAR EAST EEZ’ SEAS “

Maritime Charts - World Hydrography Office

ГИДРОГРАФИЯ ~ Video

Slide18

OCEAN3D-DigitalDepthsDATAbase-in Russian Far East Seas

“OCEAN” Llc, Vladivostok, Russia ~ OCEAN3D~DigitalDepthsDATAbase~2006-2015~ OCEANprojects.RU@gmail.com

JUNE 2012

The contribution towards  the further study of the ocean depths’ hydrography, bathymetry, hydrology & seabed’s oceanography has been also implemented by commercial fishermen of Russia (2012).

Fishermen have started to fish with the assistance of the applied computer technology information systems to support navigation.

Almost the entire fleet of the one of the fishing organisations from Vladivostok, – has been equipped (since Y 2010) with the modern OCEAN3D navigation system.

This enabled the applied use of information technology at sea.

 OCEAN3D is the computerised navigational system and, along with the traditional ECDIS (Electronic Chart Display Information System) functionality and the capacity to integrate various data from vessel electronic equipment , – in real time it is capable of to collect and correct, process and grid, render and edit , save and add, –  the additional depths data and other important information related to navigation, fishing gear, seabed environment,- to the most complete and true 2D and 3D dimensional oceans’ depths’ database.

 “Today we can see a model of the seabed depth up to 0.1 of a meter. OCEAN3D is able to produce the 3-D image of seabed in real time. This gives an opportunity to observe events that occur below the boat in real time and greatly helps a navigator to fish “– says the electronic department’s expert of the organisation which has already implemented OCEAN3D systems on its fleet of fishing vessels.

<<< That could be possible to fish without this kind of  modern fishing navigation with such accurate maps.

 However, the most “fresh” hydrographic surveys in the fishing areas, – were carried out in the 50s of the last century.

 And today, a lot of those seabed’s old depths’ databases  are hopelessly outdated.

 To achieve the success at sea, – it is very important to have fishing ground information as accurate as possible.

 And the “value” of that information may be compared to the value of “gold”.

 After all, most of fish lives at greater depths.

 Fishing gear is easy to lose or damage by making mistakes even for a few meters of depths.

 And the new approach to commercial fishing  has enhanced its efficiency and effectiveness: More Fish ~ Less Time

 The introduction of modern methods of navigation have made their positive impact on all aspects of the business activity of the organisation.

 Thanks to new developments.

These  significantly increased earnings of employees of the organisation.

 “ And, in general,  this innovation helps to fish on a completely different level. ” – said the company’s management representative.

 New technologies and new human resources:  work with modern navigation equipment, –  attracts young navigators.

 This is raising the prestige of the most important profession of Primorskiy Krai.>>>

===================================================

Гидрография Промысловых Районов ИИЗ Дальнего Востока

===================================================

Использование ОКЕАН3Д в море и в береговых условиях

==================================================

 by Marina Militare – IIM – Hydrography -Italy –  World Hydrography Day 2014

withOUT HYDROGRAPHY – Video 

Maritime Charts - World Hydrography Office

 

Hydrography EXPLAINED – Video

DRAFT

======================================================================================================

EU ~ 2009 ~ The European Marine Data and Observation Network (EMODnet)

The European Marine Data and Observation Network (EMODnet) consists of more than 100 organisations assembling marine data, products and metadata to make these fragmented resources more available to public and private users relying on quality-assured, EUstandardised and harmonised marine data which are interoperable and free of restrictions on use. EMODnet is currently in its second development phase with the target to be fully deployed by 2020.

More information about EMODnet and its development process

 The European Marine Observation and Data Network (EMODnet) is a long term marine data initiative from the European Commission Directorate-General for Maritime Affairs and Fisheries (DG MARE) underpinning its Marine Knowledge 2020 strategy. EMODnet is a consortium of organisations assembling European marine data, data products and metadata from diverse sources in a uniform way. The main purpose of EMODnet is to unlock fragmented and hidden marine data resources and to make these available to individuals and organisations (public and private), and to facilitate investment in sustainable coastal and offshore activities through improved access to quality-assured, standardised and harmonised marine data which are interoperable and free of restrictions on use.
The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is in the 2nd phase of development with seven sub-portals in operation that provide access to marine data from the following themes: bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities. EMODnet development is a dynamic process so new data, products and functionality are added regularly while portals are continuously improved to make the service more fit for purpose and user friendly with the help of users and stakeholders. Should you wish to contribute to the development of EMODnet as a data provider or user, please get in touch with us by sending a mail to info@EMODnet.eu.
  • Phase I (2009-2013) – developed a prototype (so called ur-EMODnet) with coverage of a limited selection of sea-basins, parameters and data products at low resolution;
  • Phase II (2013-2016) – aims to move from a prototype to an operational service with full coverage of all European sea-basins, a wider selection of parameters and medium rosolution data products;
  • Phase III (2015-2020) – will work towards providing a seamless multi-resolution digital map of the entire seabed of European waters providing highest resolution possible in areas that have been surveyed, including topography, geology, habitats and ecosystems; accompanied by timely information on physical, chemical and biological state of the overlying water column as well as oceanographic forecasts.

BATHYMETRY  @  EMODnet

hydrography

 

Bathymetry is the information that describes the topography of the seabed, as depth from the sea surface to the seafloor. It is an essential component in understanding the dynamics of the marine environment. Safe ocean navigation relies on accurate bathymetry data, which are also essential for planning marine installations and infrastructure such as wind turbines, coastal defences, oil platforms and pipelines. Bathymetry forms the foundation of any comprehensive marine dataset; without it, the picture is incomplete.

Objectives of EMODnet Bathymetry

EMODnet Bathymetry aims to provide a single access point to bathymetric products (Digital Terrain Models) and data (survey data sets and composite DTMs) collected and managed by an increasing number of organisation from government and research scattered over Europe

ShowSee Specific Objectives of EMODnet Bathymetry

Key services provided by EMODnet Bathymetry

The EMODNet Bathyemtry portal provides a range of services and functionalities to users for viewing and downloading bathymetry data products and for identifying and requesting access to the survey data sets that are used as basis input for the digital bathymetry (Digital Terrain Model). Currently the following key services and functionality are provided for users:

  1. Data Discovery and Access service: provides functionality to search and obtain survey data sets;
  2. Composite Products Discovery and Access Services: provides functionality to search and view metadata of Composite Digital Terrain Models;
  3. Bathymetry Viewing and Download service: provides functionality to view, browse and download digital bathymetry as Digital Terrain Models (DTMs) and obtain information about the underlying data sets used to compile the DTMs.

Showread more

Approach

The following steps are taken to make the Bathymetry portal fully operational:

  1. Establishment of  an inventory of available bathymetric data sets acquired and managed by relevant research institutes, monitoring authorities, and national hydrographic services;
  2. Development of regional Digital Terrain Models (DTM) using selected survey data sets and processing these by regional teams using a common methodology for QA – QC;
  3. Development of an overall EMODnet DTM with a gridsize of ⅛*⅛ arc minutes by integrating the regional DTMs and loading this into a  geospatial database.

Showread more

Data sources

The partners of EMODnet Bathymetry combine expertise and experiences of collecting, processing, and managing of bathymetric data together with expertise in distributed data infrastructure development and operation and providing of discovery, access and viewing services following INSPIRE implementation rules and international standards (ISO, OGC).

 For the purpose of collecting hydrographic data sets, such as multibeam surveys from scientific cruises, several types of hydrographic data providers were engaged.

 ShowOverview of types of data providers

Digital Terrain Model (DTM) product development

Digital Terrain Model (DTM) are based on 3 types of bathymetric data sources.

  • Bathymetric surveys, such as single and multibeam surveys, echosoundings and even historic leadline soundings. These data sets are most preferred as data source because of their high resolution.
  • Composite data sets, giving a gridded bathymetry. In practice it appears that Hydrographic Offices (HO’s) do not want or can not deliver primary surveys but composite data sets from the Digital Terrain Models that they maintain themselves for producing and maintaining their nautical charts following international IHO procedures.
  • GEBCO 30” gridded data. GEBCO 2014 is used by the EMODNet project to complete area coverage in case there are no survey data or composite data sets available to the partners.

Improvements in the current development Phase II (2013-2016)

  • Higher resolution digital terrain model (⅛ rather than ¼ of an arc minute);
  • Fuller coverage (now includes Baltic, Black Sea and Norwegian Sea).

========================================================================

USA ~ 2015 ~ NOAA COASTs SURVEYs

Pilot project shows nautical charting applications using NOAA Ship Okeanos Explorer data

 OE Survey W00286

Mapping is the foundation of ocean exploration and marine spatial planning. In its mission to explore and broaden our knowledge of the oceans, the NOAA ShipOkeanos Explorer has collected high-resolution multibeam data as an integral part of its operations around the globe. Since 2013, the Office of Coast Survey has collaborated with the Okeanos Explorer during their expeditions, to improve hydrographic acquisition and processing methods and expand multibeam coverage in the Gulf of Mexico and Atlantic Ocean. The resulting bathymetry has supported a diverse array of oceanic research and contributed to the protection of ecologically critical habitats in U.S. waters.

A new initiative between the Office of Ocean Exploration and Research and Coast Survey has opened the door to further maximizing the data’s usefulness. In alignment with NOAA’s integrated ocean and coastal mapping program’s philosophy of “map once, use many times,” this pilot project will integrate Okeanos Explorermultibeam data from the Gulf of Mexico into NOAA’s nautical chart update pipeline, and will expand in the future to incorporate data from the Atlantic and Pacific Oceans… https://noaacoastsurvey.wordpress.com/2015/03/18/explore-once-use-many-times/

=================================================

==================================================

//

Прикладная промысловая картография 2018 ~ район промысла креветки в северной части Японского моря

Пример:

Информационной электронной прикладной компьютеризированной и систематизированной  (“ОКЕАН3Д”)  базы данных глубин промысловых районов и картографии морей Дальнего Востока России:

1

OCEAN3D in OFFICE

I. … которая могла бы использоваться практически всеми пользователями морских пространств и ресурсов, и, особенно,рыбопромысловыми организациями и предприятиями марикульры (рыбоводными организациями), ~ владельцами промысловых судов и квот на вылов рыбных ресурсов;

OPENmap~20oct2017

владельцами прибрежных акваторий рыбоводных участков и обслуживающих судов; 

II. … и которая (“система”) способна улучшить: эффективность (прибыльность) промысла и прикладные знания о морских пространствах (промысловых районах)  и их рыбных ресурсах, как управленческого берегового админстративного персонала предприятий, так и плавсостава промысловых судов для работы в море ;

III. … чтобы ЭКОсистемно (3Д’ ~ Гидрография + Батиметрия + Гидрология + Океанография морского дна) использовать прикладные информационные технологии ГИС , и тем самым, практически вносить вклад в обеспечение восстанавливаемости рыбных ресурсов и их среды обитания, и, одновременно, повышать эффективность (“прибыльность” и “стабильность”) промысла (“Больший вылов ~ За меньшее время”).

В качестве примера,- информационная “система” одного из промысловых районов может состоять из:

  1. Официальной Российской электронной растровой (сканированная, копия изданного и откорректированного бумажного и  по прежнему  обязательного для использования на судах в море, – оригинала) навигационной картографии, – карта No.62009 ( год издания 1992  и корректуры – 2007 )NAVYchartsRU~62009
  2. Более чем 20,000,000 цифровых электронных данных глубин морского дна промыслового района северной части Японского  моря полученных в результате промысловой деятельности 23 промысловых судов в период 2006 г. – 2017 г. Данные навигационной карты  No. 62009 ( первое издание 1992г., новое издание 2007 год ) + Данные эхолотных промеров глубин промысловыми судами (период 2006-2017+ Карта изобат (батиметрия) составленная на основе более чем 20,000.000 данных эхолотных промеров глубин ( период 2006-2017). Данные глубин окорректированы относительно: А. -геометрии расположения вибратора эхолота на конкретном промысловом судне + В. -значений данных приливов и отливов относительно района где используется ОКЕАН3Д, и приведены к их наинизшему значению для системы координат “WGS 84~EPSG 3857”,”Пулково 1942~PZ1990 и правил нанесения данных глубин применяемых в навигационной картографии.61003_Fishing_Grounds_Depth_Data
  3. Для региона северо-западной части Тихого Океана и морей Дальнего Востока России ( включая акватории Корейского полуострова, о. Сахалин, Японских и Курильских отсровов, п-ов Камчатка и Чукотка, Японского, Охотского и Берингова морей) , – колличество собранных  и откорректированных цифровых электронных данных глубин  в период 2006-2017, – более чем 800,000,000 .ОКЕАН3Д.png
  4. Различных електронных цифровых видов карт составленных только на основе данных глубин полученных от эхолотных промеров рыбопромысловыми судами:  А. Географическая сетка промыслового района северной части Японского моря;  Б. Карта изобат промыслового района;  В. Глубины наиболее результативной промысловой деятельности;  Г. Картографическая сетка ГЛУБИН промыслового района северной части Японского моря  Д. Картография водоразделов, придонных холодных течений (“поднятий вод” – UPwelling), их интесивности и направлений взависимости от рельефа морского дна. 

61003_Fishing_Grounds_Depth_Data

Charts projectsions

  • Примечание: Возможности картографии “ОКЕАН3Д“, – колличеством названных выше видов карт (навигационные, промысловые, и тд), данных (глубины, температура, тип грунта, и тд), проекций и географических систем картографии (ПЗ90,WGS84, и тд), – практически НЕ ограничиваются (их может быть бесконечное множество) и все они носят прикладной (“СЕЙчас” ~ “АВТО” ~ Сбор даных, их корректировка, xранение, использование, обмен ~ распостранение, и тд) характер использования. 

 

Промысловые “угодья” северо-запада Японского моря ~ Какая глубина более выгодна ?

Промысловые “угодья” северо-запада Японского моря ~

 ~ На каких глубинах  морских прибрежных акваторий (от б.Ольга до б.Пластун) Приморского края, –  вести промысел более выгодно ?

=========================================================================

02graph-by-circles

==========================================================================

Район промысла:

Северо-запад северной части Японского моря ~ 17 April 2016 

27 April 2016 - North of Japan Sea Industrial Fishing Acivities

  • прибрежные морские акватории районов :                                        

           от б.Ольга ~ Рудная Пристань- б.Пластун;

  • период 2013-2014;
  • район ограничен координатами                                                                                                  43 48 С 135 48 В, 43 48 С 137 48 В, 45 24 С 137 24 В и 45 42 С 137 48 В;
  • Площадь района: 4, 960 морских миль2 или 17,080 км2
  • Диапазон глубин района: 150 м – 2,850 м.

Cplot~FishingArea

3Д проекция района на основе информации о    5 (пяти) миллионах данных эхолотных промеров глубин
и профиль рельефа относительно линии предварительной прокладки постановки орудий лова

Plastun3D

Информация о глубинах района

Данные гидрографии от навигационных карт различных проекций и масштабов (2012) ~ около 2,000

RUSchart~01

     NAVchart

Электронные навигационные картографии “Сmap” & “Navionics”

используются в “ОКЕАН3Д” как составляющие ЭКНИС (Электронная Картография и Навигационная Информационная система)

CplotMAP

 ОКЕАН3Д

OCEAN3D

“2Д” проекция

  • Электронная глобальная батиметрия “2Д” и “3Д” дна морей и океанов +
  • Карта изобат составленная на основе дополненных (5,000,000) и откорректированных (2,000) данных за счет эхолотных промеров глубин несколькими промысловыми судами работавших в районе в период 2013-2014
  • Широта + Долгота + Глубина = 5,002,000, где +
  • “Ноль глубин” ~ “Depth Below Surface” ~ с учетом поправок ~ данных местных приливо-отливных течений и геометрии размещения вибратора эхолота на определённом судне.

02-PrimKray&FishingArea

“3Д” проекция:

  • отстояние судна от морского дна – 300 м; глубина в месте расположения судна – 800 м;
  • профиль рельефа морского дна в направлении линии (отстояние от дна = 1 м) предполагаемой (предварительная прокладка) промысловой деятельности судна: пеленг 40; дистанция 60 км (32 мили)=25,000 данных глубин;
  • полученный диапазон глубин профиля на дистанции линии предварительной прокладки = 600 м ~ 1,300 м.

01-inP3D

“2Д” проекция:

  • карта изобат района +
  • районы наиболее результативной промысловой деятельности +
  • данные о возможных направлениях и интенсивности “апвеллинговых” придонных течений.

03-Iso

“3Д” проекция:

  • карта изобат района +
  • районы наиболее результативной промысловой деятельности +
  • данные о возможных направлениях и интенсивности “апвеллинговых” течений.

04-3d

“2Д” проекция:

  • карта изобат района +
  • районы наиболее результативной промысловой деятельности +
  • данные о возможных направлениях и интенсивности “апвеллинговых” течений +
  • территории акваторий “водоразделов” придонных масс морской воды относительно рельефа дна в диапазоне глубин 150 м – 2,850 м +
  • “русла течений” ~ русла  придонных течений в пределах “территорий водоразделов”.

05-Apwelling

Промысловый планшет ~ район 44 00 С – 44 12 С и 136 24 В – 136 36 В (100.8 миль2)~ карта изобат (интервал изобат=10 м; диапазон изобат: 830 м – 1,180 м) составленная в районе промысла на основе данных эхолотных промеров глубин промысловым судном

Bathimetry-20

Промысловый планшет = район 44  04.8 С – 44  07.2  С  и 136  26.8 В – 136 31.2 В (3.8 мили2) = карта изобат (интервал изобат=1 м; диапазон: 900 м – 951 м), составленная в районе промысла на основе данных эхолотных промеров глубин промысловым судном

Bathimetry-1

=================================================================

 

ОКЕАН3Д=

=БОльший вылов (+$$$)~За меньшее Время (-$) =

=значительное снижение непроизводительных затрат 

01graph-by-bars

и повышение эффективности использования промыслового времени

03combined-graph-by-positions-bathymetry-depths-time

=================================================

«Пробелы» и “чувствительные зоны”в картографии дна мирового океана

Briefly translated  “Roadmap for Future Ocean Floor Mapping ~ Seabed by 2030” with the assistance of Google Translate

«Пробелы» в картографии дна Мирового океана

Несомненно то, что достижение цели проекта «Картография Дна морей и океанов – 2030» представляет собой большую проблему.

В соответствии с анализом имеющейся информации получается, что если использовать 1 гидрографичекое судно с многолучемым гидролокатором, то потребуется 970 лет для создания картографии районов морского дна, где данные глубин на данный момент отсутствуют.

«970 летний» период не учитывает факт того,  что качество данных гидрографии дна океанов и морей существенно варьируется. Многие данные глубин океана должны быть изучены вновь, чтобы привести их в соответствии с современными стандартами.

UNmanned mapping barge

Даже если существует больше данных гидрографии морского дна, чем используется в анализировании «проекта», то цель «проекта картографии морского дна 2030» может быть достигнута только в том случае, если другие пользователи пространств и ресурсов океана инициируют работу многих других проектов связанных получением новых и дополнением и корректировкой существующих данных глубин картографии дна океана.

«Общественный» источник получения данных глубин оказался мощным способом постоянного пополнения данных глубин Мирового океана.

Olex ™ и TeamSurv ™ – это два примера компаний, которые смогли показать, как рыболовные суда и небольшие прогулочные катера, оснащенные эхолотами, являются необычными информационными ресурсами, способными постоянно «отображать данные глубин океана».

Ключом к тому, чтобы все пользователи морских пространств и ресурсов могли внести свой вклад и поделиться своими данными о глубинах дна морей и океанов, явилось то, что в «ответ» на получение данных глубин от морского сообщества, нужно было что-то предложить взамен.

«Возвратом» от Olex ™ и TeamSurv ™ явилось предоставление «вкладчикам БАНКА данных глубин морей и окенов» более качественной картографии морского дна которая помогла и продолжает помогать:

  • рыбакам улучшать эффективность промышленного и любительского рыболовства;
  • любителям подводного мира искать, находить и использовать лучшие места для подводного плавания
  • владельцам небольших любительских судов, избегать посадок на мель.

Однако данные глубин морского дна полученные от пользователей морских пространств, сегодня эффективны только для картографии мелководных вод континентального шельфа, районов плавания небольших рыболовных и прогулочных судов имеющих на борту эхолоты и гидролокаторы, которые могут собирать данные глубин морского дна.

Существуют также проблемы с качеством данных глубин морского дна полученных от пользователей морских пространств. Но  огромное количество данных глубин морского дна вносимых «морской общественностью» помогает в некоторой степени отфильтровывать отдельные погрешности в точности данных глубин.

На больших промысловых рыболовных судах могут иметься низкочастотные эхолоты, которым доступны глубины около 3000 м и более, но не-специализированные суда включая различные таковые исследовательские не имеют эхолотов способных достичь максимальных глубин морского дна  океана. Учитывая, что 50% Мирового океана имеет глубину более чем 3,200 м (рис. 6.1), то более половины мирового океана и его глубины практически недостуны большиству пользователей морских пространств и ресурсов.

Depth &amp; Height

Но и это может изменится, если большее колличество  судов будет оснащаться глубоководными эхолотами. Данные глубин морского дна от пользователей  пространств и ресурсов мирового океана , – это феноменальный ресурс, обладающий огромным потенциалом.

Для решения этой проблемы, Seabed 2030 создает рабочую группу с целью составления серии программных руководств, включенных в технический документ, которые будут представлены национальным и международным финансовым учреждениям. Цель состоит в том, чтобы содействовать созданию возможностей финансирования программ картографических экспедиций и других новых общественных инициатив, которые поддерживают полное картографирование морского дна к 2030 году.

Данные глубин океана из «чуствительных зон»

Существует несколько регионов Мирового океана, где доступ к батиметрической информации может быть нелегким по причинам, которые могут считаться политическими (экономическими), например, районы, где существуют споры о территориальных водах стран или границах исключительных экономических зон (ИЭЗ).

В других международных регионах океана оффшорная нефтегазовая отрасль может не захотеть делиться батиметрическими данными, собранными для целей разведки подводных полезных ископаеммых в силу конкурентных причин и / или конфиденциальности клиентов.

Кроме того, глубина и рельеф дна океана в некоторых странах считаются важными в  их военно-стратегического значении, и поэтому данные батиметрии с высоким разрешением классифицируются и доступ к ним ограничивается национальным законодательством.

Все это представляет собой серьезные проблемы для Seabed 2030, и создание потенциала будет иметь решающее значение для их решений.

Международная сеть ученых из программы Nippon Foundation-GEBCO для аспирантов по океанической батиметрии, организованная Университетом Нью-Хэмпшира, США, станет важным ресурсом для решения этой проблемы.

Эта программа, которая началась в 2004 году, разработала сеть из более чем 78 студентов со всего мира, которые будут важными сторонниками Seabed 2030, особенно когда они перейдут на работу на руководящие должности в своих национальных и академических организациях.

Предоставление информационно-пропагандистских материалов и четких сообщений будет важно для содействия их усилиям. Мы ожидаем, что по мере внесения большего количества данных в проект «Морское дно 2030», его продукты будут широко распространены и признаны, будет возрастать готовность новых групп к предоставлению данных.

Критическим аспектом стратегии является создание ранних сторонников проекта, которые помогут создать системы, процессы, обмен сообщениями и давление со стороны соратников, которые помогут и побудят других в конечном итоге следовать целям проекта.

Предложение о создании альянса пользователей Больших Морских ЭКОсистем («БМЭ») и ресурсов океана Дальневоcточного региона России

Предложение о создании альянса пользователей Больших Морских ЭКОсистем («БМЭ») и ресурсов океана Дальневоcточного региона России.

————————————————————————–

В соотстветсвии с определением Организации Объединенных наций: Регионы Больших Морских экосистем (“Large Marine Ecosystems”) океана включают в себя территории простирающиеся от бассейнов рек и их лиманов, прилегающих к морям и океанам, до внешних границ континентального шельфа и далее, и также до внешних границ основных океанических региональных течений.

Big Marine ECOsystems ~ 64 BME

Такие ЭКОсостемы характеризуются следующими основными факторами:

· Они содержат 95% мировых запасов рыбных ресурсов;
· Большая часть загрязнения океана приходится именно на эти морские пространства;
· Эти регионы мирового океана подвержены наиболее интенсивной эксплуатации человеком;
· Изменения в среде океана таких регионов могут носить критический, необратимый характер («мертвые зоны» ~ несколько регионов Мексиканского залива ~ 2010-12).

Территории БМЭ и их границы определяются на основе четырех, не политических или экономических, но экологически связанных друг с другом факторов:

· Гидрография
· Батиметрия
· Продуктивность
· Трофическая (экологическая) связь

Основываясь на вышеназванных четырех факторах, в прибрежных районах мирового океана (включая Атлантический, Тихий и Индийский) были образованы 64 Больших Морских Экосистемы.

Российские Дальневосточные Региональные Морские ЭКОсистемы: No.50~Японское Море; No.51~Курильское Течение; No.52~ Охотское море; No.53~Западная часть Берингова Моря

BNE in Rus far east.png

 

обеспечивают работу таких основных видов морских секторов промышленности как:

· национальные и международные морские грузовые и пассажирские перевозки и морской     туризм,
· промышленное, любительское, океаническое и прибрежное рыболовство,
· научные исследования и гидрографию,
· развитие и эксплуатацию предприятий аквакультуры,
· разработку и добычу шельфовых месторождений нефти, газа, минералов и других.

Значительно возросшие за последние десятилетия интенсивность и разнообразие морской деятельности и значительно увеличившееся число катастроф во многих регионах океана ведет к повышенному

Балкер “Shen Neng1”, Большой Барьерный Риф, Коралловое Море,Австралия,2010

Контейнеровоз “RENA” – Новая Зеландия, Bay of Plenty, 2011

Плавучая платформа “ Flotel Upiter” – Мексика, Мeксиканский залив, 2011

Траулер “Капитан Болсуновский”, Россия, – Берингово Море, 2012

Судно “GARDIAN”, Военно-Морской Флот США, – Море Сулу , Индонезия, 2012

Пассажирский лайнер “Коста Конкордия» – Средиземное Море, Италия, 2012

Position of Costa Concordia on seabed and 3D image of seafloor

 

и обостренному росту конкуренции и созданию конфликтов между широким спектром участников (включая организации как международного уровня так и национального или местного~регионального и локального) использования экосистемы всего мирового океана.

В большинстве законодательных, правовых, политических и общественных аспектах деятельности человека в океане , в наибольшей степени доминируют и преобладают экологические составляющие и их возрастающие напряженность и проблемность в отношении безопасности ресурсов и экосистем. Это относится ко всем без исключения пользователям морских пространств и ресурсов: рыболовству и аквакультуре, нефтяной и газовой промышленности, морскому туризму, портам, создателям и пользователям источников электроэнергии, гидрографии и научные исследованиям.

Admin

Пользователи 1

Доступ к морским ресурсам и акваториям находится в опасности от потери национальных и международных «экологических и/или социальных лицензий» в связи с влиянием как общественных, так и законодательных и административно – управленческих процессов принятия решений.

Пользователи 2

Также это относится к видам и районам деятельности, в которых какая-либо отрасль или промышленность не были ранее вовлечены на достаточно высоком профессиональном уровне развития и не имеют на настоящий момент необходимого опыта. Одновременно, такие проблемы создают возможные перспективы для взаимодействия и развития взаимовыгодного и более безопасного для экосистемы океана делового сотрудничества между различными отраслями и аспектами деятельности.

К сожалению, участники деловой активности в океане пока не вовлечены и не имееют достаточно скоординированного, системного и совместного подхода к принятию решений, как по отношению к деятельности в настоящем времени, так и по отношению к будущему. Это в свою очередь приводит к утраченным возможностям для сотрудничества, снижению эффективности и масштабности, рациональности и безопасности.

Отмечаются такие реалии настоящего времени, когда наиболее ответственные и состоявшиеся участники деловой активности в океане отделяют себя от безответственных, не развивают сотрудничество с единомышленниками и партнерами, не делятся прогрессивной экологически ценной информацией с общественностью и средствами массовой информации, не развивают конструктивных отношений с заинтересованными сторонами.

В настоящее время государственный и частный деловые сектора всех отраслей морской деятельности являются основными пользователями экосистемы океана. Именно они находятся в наилучшем положении для разработки практических ответственных решений, необходимых для обеспечения экологической безопасности и устойчивого использования ресурсов океана.

Некоторые организации и профессионально ориентированные ассоциации стараются вести и развивать бизнес на экологически устойчивой основе. Тем не менее, усилий только нескольких организаций или ассоциаций какого-либо одного сектора и даже нескольких морских отраслей, – не достаточно. Чтобы выработать общее и приемлимое решение для уменьшения или полного устранения негативного воздействия на окружающую среду в океане для какого-либо вида деятельности, необходимо коллективное, обоснованное и информированное участие в принятии решений всех участников деятельности в океане.

Развитие межсекторного сотрудничества и создание регионального альянса морских отраслей на Дальнем Востоке России, могло бы способствовать:

– Объединению широкого диапазона видов деятельности в океане;

– Повышению уровня безопасности использования экосистем мирового океана;

– Развитию взаимовыгодного международного и регионального сотрудничества на экосистемной основе;

– Обеспечению заслуженного лидерства организаций, применяющих наиболее безопасные, ответственные виды деятельности и методы использования акваторий и ресурсов океана;

– Прогрессу сотрудничества общественности и бизнеса на более конструктивной, информированной, объединенной основе;

– Развитию системы межсекторного мониторинга и анализа динамики изменений экосистемы океана на основе прикладных, наиболее эффективных и научно-обоснованных информированных решений;

– Использованию экосистемы океана на основе постоянного процесса прикладных усовершенствований, наилучших практических и утвержденных стандартов;

– Улучшению диалога и взаимопонимания между секторами морской индустрии и снижению количества конфликтных ситуаций;

– Обеспечению, поддержке и участию коллективных общественных и деловых, государственных и частных, региональных и глобальных, местных национальных и международных инициатив и действий в отношении изучения океана, обогащения и увеличения объема знаний прикладного значения;

– Cозданию структур (общественного, государственного, делового) управления и контроля предотвращения и предупреждения аварийных случаев нанесения ущерба ЭКОсистемам океана.