Category Archives: Large Marine ECOsystem

OCEAN3D (Russia) ~ OCEANShydrography (Italy) ~ EMOD (Europe) ~ NASA (USA)




Maritime Charts - World Hydrography Office



OCEAN3D-DigitalDepthsDATAbase-in Russian Far East Seas

“OCEAN” Llc, Vladivostok, Russia ~ OCEAN3D~DigitalDepthsDATAbase~2006-2015~

JUNE 2012

The contribution towards  the further study of the ocean depths’ hydrography, bathymetry, hydrology & seabed’s oceanography has been also implemented by commercial fishermen of Russia (2012).

Fishermen have started to fish with the assistance of the applied computer technology information systems to support navigation.

Almost the entire fleet of the one of the fishing organisations from Vladivostok, – has been equipped (since Y 2010) with the modern OCEAN3D navigation system.

This enabled the applied use of information technology at sea.

 OCEAN3D is the computerised navigational system and, along with the traditional ECDIS (Electronic Chart Display Information System) functionality and the capacity to integrate various data from vessel electronic equipment , – in real time it is capable of to collect and correct, process and grid, render and edit , save and add, –  the additional depths data and other important information related to navigation, fishing gear, seabed environment,- to the most complete and true 2D and 3D dimensional oceans’ depths’ database.

 “Today we can see a model of the seabed depth up to 0.1 of a meter. OCEAN3D is able to produce the 3-D image of seabed in real time. This gives an opportunity to observe events that occur below the boat in real time and greatly helps a navigator to fish “– says the electronic department’s expert of the organisation which has already implemented OCEAN3D systems on its fleet of fishing vessels.

<<< That could be possible to fish without this kind of  modern fishing navigation with such accurate maps.

 However, the most “fresh” hydrographic surveys in the fishing areas, – were carried out in the 50s of the last century.

 And today, a lot of those seabed’s old depths’ databases  are hopelessly outdated.

 To achieve the success at sea, – it is very important to have fishing ground information as accurate as possible.

 And the “value” of that information may be compared to the value of “gold”.

 After all, most of fish lives at greater depths.

 Fishing gear is easy to lose or damage by making mistakes even for a few meters of depths.

 And the new approach to commercial fishing  has enhanced its efficiency and effectiveness: More Fish ~ Less Time

 The introduction of modern methods of navigation have made their positive impact on all aspects of the business activity of the organisation.

 Thanks to new developments.

These  significantly increased earnings of employees of the organisation.

 “ And, in general,  this innovation helps to fish on a completely different level. ” – said the company’s management representative.

 New technologies and new human resources:  work with modern navigation equipment, –  attracts young navigators.

 This is raising the prestige of the most important profession of Primorskiy Krai.>>>


Гидрография Промысловых Районов ИИЗ Дальнего Востока


Использование ОКЕАН3Д в море и в береговых условиях


 by Marina Militare – IIM – Hydrography -Italy –  World Hydrography Day 2014


Maritime Charts - World Hydrography Office


Hydrography EXPLAINED – Video



EU ~ 2009 ~ The European Marine Data and Observation Network (EMODnet)

The European Marine Data and Observation Network (EMODnet) consists of more than 100 organisations assembling marine data, products and metadata to make these fragmented resources more available to public and private users relying on quality-assured, EUstandardised and harmonised marine data which are interoperable and free of restrictions on use. EMODnet is currently in its second development phase with the target to be fully deployed by 2020.

More information about EMODnet and its development process

 The European Marine Observation and Data Network (EMODnet) is a long term marine data initiative from the European Commission Directorate-General for Maritime Affairs and Fisheries (DG MARE) underpinning its Marine Knowledge 2020 strategy. EMODnet is a consortium of organisations assembling European marine data, data products and metadata from diverse sources in a uniform way. The main purpose of EMODnet is to unlock fragmented and hidden marine data resources and to make these available to individuals and organisations (public and private), and to facilitate investment in sustainable coastal and offshore activities through improved access to quality-assured, standardised and harmonised marine data which are interoperable and free of restrictions on use.
The EMODnet data infrastructure is developed through a stepwise approach in three major phases. Currently EMODnet is in the 2nd phase of development with seven sub-portals in operation that provide access to marine data from the following themes: bathymetry, geology, physics, chemistry, biology, seabed habitats and human activities. EMODnet development is a dynamic process so new data, products and functionality are added regularly while portals are continuously improved to make the service more fit for purpose and user friendly with the help of users and stakeholders. Should you wish to contribute to the development of EMODnet as a data provider or user, please get in touch with us by sending a mail to
  • Phase I (2009-2013) – developed a prototype (so called ur-EMODnet) with coverage of a limited selection of sea-basins, parameters and data products at low resolution;
  • Phase II (2013-2016) – aims to move from a prototype to an operational service with full coverage of all European sea-basins, a wider selection of parameters and medium rosolution data products;
  • Phase III (2015-2020) – will work towards providing a seamless multi-resolution digital map of the entire seabed of European waters providing highest resolution possible in areas that have been surveyed, including topography, geology, habitats and ecosystems; accompanied by timely information on physical, chemical and biological state of the overlying water column as well as oceanographic forecasts.




Bathymetry is the information that describes the topography of the seabed, as depth from the sea surface to the seafloor. It is an essential component in understanding the dynamics of the marine environment. Safe ocean navigation relies on accurate bathymetry data, which are also essential for planning marine installations and infrastructure such as wind turbines, coastal defences, oil platforms and pipelines. Bathymetry forms the foundation of any comprehensive marine dataset; without it, the picture is incomplete.

Objectives of EMODnet Bathymetry

EMODnet Bathymetry aims to provide a single access point to bathymetric products (Digital Terrain Models) and data (survey data sets and composite DTMs) collected and managed by an increasing number of organisation from government and research scattered over Europe

ShowSee Specific Objectives of EMODnet Bathymetry

Key services provided by EMODnet Bathymetry

The EMODNet Bathyemtry portal provides a range of services and functionalities to users for viewing and downloading bathymetry data products and for identifying and requesting access to the survey data sets that are used as basis input for the digital bathymetry (Digital Terrain Model). Currently the following key services and functionality are provided for users:

  1. Data Discovery and Access service: provides functionality to search and obtain survey data sets;
  2. Composite Products Discovery and Access Services: provides functionality to search and view metadata of Composite Digital Terrain Models;
  3. Bathymetry Viewing and Download service: provides functionality to view, browse and download digital bathymetry as Digital Terrain Models (DTMs) and obtain information about the underlying data sets used to compile the DTMs.

Showread more


The following steps are taken to make the Bathymetry portal fully operational:

  1. Establishment of  an inventory of available bathymetric data sets acquired and managed by relevant research institutes, monitoring authorities, and national hydrographic services;
  2. Development of regional Digital Terrain Models (DTM) using selected survey data sets and processing these by regional teams using a common methodology for QA – QC;
  3. Development of an overall EMODnet DTM with a gridsize of ⅛*⅛ arc minutes by integrating the regional DTMs and loading this into a  geospatial database.

Showread more

Data sources

The partners of EMODnet Bathymetry combine expertise and experiences of collecting, processing, and managing of bathymetric data together with expertise in distributed data infrastructure development and operation and providing of discovery, access and viewing services following INSPIRE implementation rules and international standards (ISO, OGC).

 For the purpose of collecting hydrographic data sets, such as multibeam surveys from scientific cruises, several types of hydrographic data providers were engaged.

 ShowOverview of types of data providers

Digital Terrain Model (DTM) product development

Digital Terrain Model (DTM) are based on 3 types of bathymetric data sources.

  • Bathymetric surveys, such as single and multibeam surveys, echosoundings and even historic leadline soundings. These data sets are most preferred as data source because of their high resolution.
  • Composite data sets, giving a gridded bathymetry. In practice it appears that Hydrographic Offices (HO’s) do not want or can not deliver primary surveys but composite data sets from the Digital Terrain Models that they maintain themselves for producing and maintaining their nautical charts following international IHO procedures.
  • GEBCO 30” gridded data. GEBCO 2014 is used by the EMODNet project to complete area coverage in case there are no survey data or composite data sets available to the partners.

Improvements in the current development Phase II (2013-2016)

  • Higher resolution digital terrain model (⅛ rather than ¼ of an arc minute);
  • Fuller coverage (now includes Baltic, Black Sea and Norwegian Sea).



Pilot project shows nautical charting applications using NOAA Ship Okeanos Explorer data

 OE Survey W00286

Mapping is the foundation of ocean exploration and marine spatial planning. In its mission to explore and broaden our knowledge of the oceans, the NOAA ShipOkeanos Explorer has collected high-resolution multibeam data as an integral part of its operations around the globe. Since 2013, the Office of Coast Survey has collaborated with the Okeanos Explorer during their expeditions, to improve hydrographic acquisition and processing methods and expand multibeam coverage in the Gulf of Mexico and Atlantic Ocean. The resulting bathymetry has supported a diverse array of oceanic research and contributed to the protection of ecologically critical habitats in U.S. waters.

A new initiative between the Office of Ocean Exploration and Research and Coast Survey has opened the door to further maximizing the data’s usefulness. In alignment with NOAA’s integrated ocean and coastal mapping program’s philosophy of “map once, use many times,” this pilot project will integrate Okeanos Explorermultibeam data from the Gulf of Mexico into NOAA’s nautical chart update pipeline, and will expand in the future to incorporate data from the Atlantic and Pacific Oceans…




Прикладная промысловая картография 2018 ~ район промысла креветки в северной части Японского моря


Информационной электронной прикладной компьютеризированной и систематизированной  (“ОКЕАН3Д”)  базы данных глубин промысловых районов и картографии морей Дальнего Востока России:



I. … которая могла бы использоваться практически всеми пользователями морских пространств и ресурсов, и, особенно,рыбопромысловыми организациями и предприятиями марикульры (рыбоводными организациями), ~ владельцами промысловых судов и квот на вылов рыбных ресурсов;


владельцами прибрежных акваторий рыбоводных участков и обслуживающих судов; 

II. … и которая (“система”) способна улучшить: эффективность (прибыльность) промысла и прикладные знания о морских пространствах (промысловых районах)  и их рыбных ресурсах, как управленческого берегового админстративного персонала предприятий, так и плавсостава промысловых судов для работы в море ;

III. … чтобы ЭКОсистемно (3Д’ ~ Гидрография + Батиметрия + Гидрология + Океанография морского дна) использовать прикладные информационные технологии ГИС , и тем самым, практически вносить вклад в обеспечение восстанавливаемости рыбных ресурсов и их среды обитания, и, одновременно, повышать эффективность (“прибыльность” и “стабильность”) промысла (“Больший вылов ~ За меньшее время”).

В качестве примера,- информационная “система” одного из промысловых районов может состоять из:

  1. Официальной Российской электронной растровой (сканированная, копия изданного и откорректированного бумажного и  по прежнему  обязательного для использования на судах в море, – оригинала) навигационной картографии, – карта No.62009 ( год издания 1992  и корректуры – 2007 )NAVYchartsRU~62009
  2. Более чем 20,000,000 цифровых электронных данных глубин морского дна промыслового района северной части Японского  моря полученных в результате промысловой деятельности 23 промысловых судов в период 2006 г. – 2017 г. Данные навигационной карты  No. 62009 ( первое издание 1992г., новое издание 2007 год ) + Данные эхолотных промеров глубин промысловыми судами (период 2006-2017+ Карта изобат (батиметрия) составленная на основе более чем 20,000.000 данных эхолотных промеров глубин ( период 2006-2017). Данные глубин окорректированы относительно: А. -геометрии расположения вибратора эхолота на конкретном промысловом судне + В. -значений данных приливов и отливов относительно района где используется ОКЕАН3Д, и приведены к их наинизшему значению для системы координат “WGS 84~EPSG 3857”,”Пулково 1942~PZ1990 и правил нанесения данных глубин применяемых в навигационной картографии.61003_Fishing_Grounds_Depth_Data
  3. Для региона северо-западной части Тихого Океана и морей Дальнего Востока России ( включая акватории Корейского полуострова, о. Сахалин, Японских и Курильских отсровов, п-ов Камчатка и Чукотка, Японского, Охотского и Берингова морей) , – колличество собранных  и откорректированных цифровых электронных данных глубин  в период 2006-2017, – более чем 800,000,000 .ОКЕАН3Д.png
  4. Различных електронных цифровых видов карт составленных только на основе данных глубин полученных от эхолотных промеров рыбопромысловыми судами:  А. Географическая сетка промыслового района северной части Японского моря;  Б. Карта изобат промыслового района;  В. Глубины наиболее результативной промысловой деятельности;  Г. Картографическая сетка ГЛУБИН промыслового района северной части Японского моря  Д. Картография водоразделов, придонных холодных течений (“поднятий вод” – UPwelling), их интесивности и направлений взависимости от рельефа морского дна. 


Charts projectsions

  • Примечание: Возможности картографии “ОКЕАН3Д“, – колличеством названных выше видов карт (навигационные, промысловые, и тд), данных (глубины, температура, тип грунта, и тд), проекций и географических систем картографии (ПЗ90,WGS84, и тд), – практически НЕ ограничиваются (их может быть бесконечное множество) и все они носят прикладной (“СЕЙчас” ~ “АВТО” ~ Сбор даных, их корректировка, xранение, использование, обмен ~ распостранение, и тд) характер использования. 


«Пробелы» и “чувствительные зоны”в картографии дна мирового океана

Briefly translated  “Roadmap for Future Ocean Floor Mapping ~ Seabed by 2030” with the assistance of Google Translate

«Пробелы» в картографии дна Мирового океана

Несомненно то, что достижение цели проекта «Картография Дна морей и океанов – 2030» представляет собой большую проблему.

В соответствии с анализом имеющейся информации получается, что если использовать 1 гидрографичекое судно с многолучемым гидролокатором, то потребуется 970 лет для создания картографии районов морского дна, где данные глубин на данный момент отсутствуют.

«970 летний» период не учитывает факт того,  что качество данных гидрографии дна океанов и морей существенно варьируется. Многие данные глубин океана должны быть изучены вновь, чтобы привести их в соответствии с современными стандартами.

UNmanned mapping barge

Даже если существует больше данных гидрографии морского дна, чем используется в анализировании «проекта», то цель «проекта картографии морского дна 2030» может быть достигнута только в том случае, если другие пользователи пространств и ресурсов океана инициируют работу многих других проектов связанных получением новых и дополнением и корректировкой существующих данных глубин картографии дна океана.

«Общественный» источник получения данных глубин оказался мощным способом постоянного пополнения данных глубин Мирового океана.

Olex ™ и TeamSurv ™ – это два примера компаний, которые смогли показать, как рыболовные суда и небольшие прогулочные катера, оснащенные эхолотами, являются необычными информационными ресурсами, способными постоянно «отображать данные глубин океана».

Ключом к тому, чтобы все пользователи морских пространств и ресурсов могли внести свой вклад и поделиться своими данными о глубинах дна морей и океанов, явилось то, что в «ответ» на получение данных глубин от морского сообщества, нужно было что-то предложить взамен.

«Возвратом» от Olex ™ и TeamSurv ™ явилось предоставление «вкладчикам БАНКА данных глубин морей и окенов» более качественной картографии морского дна которая помогла и продолжает помогать:

  • рыбакам улучшать эффективность промышленного и любительского рыболовства;
  • любителям подводного мира искать, находить и использовать лучшие места для подводного плавания
  • владельцам небольших любительских судов, избегать посадок на мель.

Однако данные глубин морского дна полученные от пользователей морских пространств, сегодня эффективны только для картографии мелководных вод континентального шельфа, районов плавания небольших рыболовных и прогулочных судов имеющих на борту эхолоты и гидролокаторы, которые могут собирать данные глубин морского дна.

Существуют также проблемы с качеством данных глубин морского дна полученных от пользователей морских пространств. Но  огромное количество данных глубин морского дна вносимых «морской общественностью» помогает в некоторой степени отфильтровывать отдельные погрешности в точности данных глубин.

На больших промысловых рыболовных судах могут иметься низкочастотные эхолоты, которым доступны глубины около 3000 м и более, но не-специализированные суда включая различные таковые исследовательские не имеют эхолотов способных достичь максимальных глубин морского дна  океана. Учитывая, что 50% Мирового океана имеет глубину более чем 3,200 м (рис. 6.1), то более половины мирового океана и его глубины практически недостуны большиству пользователей морских пространств и ресурсов.

Depth &amp; Height

Но и это может изменится, если большее колличество  судов будет оснащаться глубоководными эхолотами. Данные глубин морского дна от пользователей  пространств и ресурсов мирового океана , – это феноменальный ресурс, обладающий огромным потенциалом.

Для решения этой проблемы, Seabed 2030 создает рабочую группу с целью составления серии программных руководств, включенных в технический документ, которые будут представлены национальным и международным финансовым учреждениям. Цель состоит в том, чтобы содействовать созданию возможностей финансирования программ картографических экспедиций и других новых общественных инициатив, которые поддерживают полное картографирование морского дна к 2030 году.

Данные глубин океана из «чуствительных зон»

Существует несколько регионов Мирового океана, где доступ к батиметрической информации может быть нелегким по причинам, которые могут считаться политическими (экономическими), например, районы, где существуют споры о территориальных водах стран или границах исключительных экономических зон (ИЭЗ).

В других международных регионах океана оффшорная нефтегазовая отрасль может не захотеть делиться батиметрическими данными, собранными для целей разведки подводных полезных ископаеммых в силу конкурентных причин и / или конфиденциальности клиентов.

Кроме того, глубина и рельеф дна океана в некоторых странах считаются важными в  их военно-стратегического значении, и поэтому данные батиметрии с высоким разрешением классифицируются и доступ к ним ограничивается национальным законодательством.

Все это представляет собой серьезные проблемы для Seabed 2030, и создание потенциала будет иметь решающее значение для их решений.

Международная сеть ученых из программы Nippon Foundation-GEBCO для аспирантов по океанической батиметрии, организованная Университетом Нью-Хэмпшира, США, станет важным ресурсом для решения этой проблемы.

Эта программа, которая началась в 2004 году, разработала сеть из более чем 78 студентов со всего мира, которые будут важными сторонниками Seabed 2030, особенно когда они перейдут на работу на руководящие должности в своих национальных и академических организациях.

Предоставление информационно-пропагандистских материалов и четких сообщений будет важно для содействия их усилиям. Мы ожидаем, что по мере внесения большего количества данных в проект «Морское дно 2030», его продукты будут широко распространены и признаны, будет возрастать готовность новых групп к предоставлению данных.

Критическим аспектом стратегии является создание ранних сторонников проекта, которые помогут создать системы, процессы, обмен сообщениями и давление со стороны соратников, которые помогут и побудят других в конечном итоге следовать целям проекта.

Предложение о создании альянса пользователей Больших Морских ЭКОсистем («БМЭ») и ресурсов океана Дальневоcточного региона России

Предложение о создании альянса пользователей Больших Морских ЭКОсистем («БМЭ») и ресурсов океана Дальневоcточного региона России.


В соотстветсвии с определением Организации Объединенных наций: Регионы Больших Морских экосистем (“Large Marine Ecosystems”) океана включают в себя территории простирающиеся от бассейнов рек и их лиманов, прилегающих к морям и океанам, до внешних границ континентального шельфа и далее, и также до внешних границ основных океанических региональных течений.

Big Marine ECOsystems ~ 64 BME

Такие ЭКОсостемы характеризуются следующими основными факторами:

· Они содержат 95% мировых запасов рыбных ресурсов;
· Большая часть загрязнения океана приходится именно на эти морские пространства;
· Эти регионы мирового океана подвержены наиболее интенсивной эксплуатации человеком;
· Изменения в среде океана таких регионов могут носить критический, необратимый характер («мертвые зоны» ~ несколько регионов Мексиканского залива ~ 2010-12).

Территории БМЭ и их границы определяются на основе четырех, не политических или экономических, но экологически связанных друг с другом факторов:

· Гидрография
· Батиметрия
· Продуктивность
· Трофическая (экологическая) связь

Основываясь на вышеназванных четырех факторах, в прибрежных районах мирового океана (включая Атлантический, Тихий и Индийский) были образованы 64 Больших Морских Экосистемы.

Российские Дальневосточные Региональные Морские ЭКОсистемы: No.50~Японское Море; No.51~Курильское Течение; No.52~ Охотское море; No.53~Западная часть Берингова Моря

BNE in Rus far east.png


обеспечивают работу таких основных видов морских секторов промышленности как:

· национальные и международные морские грузовые и пассажирские перевозки и морской     туризм,
· промышленное, любительское, океаническое и прибрежное рыболовство,
· научные исследования и гидрографию,
· развитие и эксплуатацию предприятий аквакультуры,
· разработку и добычу шельфовых месторождений нефти, газа, минералов и других.

Значительно возросшие за последние десятилетия интенсивность и разнообразие морской деятельности и значительно увеличившееся число катастроф во многих регионах океана ведет к повышенному

Балкер “Shen Neng1”, Большой Барьерный Риф, Коралловое Море,Австралия,2010

Контейнеровоз “RENA” – Новая Зеландия, Bay of Plenty, 2011

Плавучая платформа “ Flotel Upiter” – Мексика, Мeксиканский залив, 2011

Траулер “Капитан Болсуновский”, Россия, – Берингово Море, 2012

Судно “GARDIAN”, Военно-Морской Флот США, – Море Сулу , Индонезия, 2012

Пассажирский лайнер “Коста Конкордия» – Средиземное Море, Италия, 2012

Position of Costa Concordia on seabed and 3D image of seafloor


и обостренному росту конкуренции и созданию конфликтов между широким спектром участников (включая организации как международного уровня так и национального или местного~регионального и локального) использования экосистемы всего мирового океана.

В большинстве законодательных, правовых, политических и общественных аспектах деятельности человека в океане , в наибольшей степени доминируют и преобладают экологические составляющие и их возрастающие напряженность и проблемность в отношении безопасности ресурсов и экосистем. Это относится ко всем без исключения пользователям морских пространств и ресурсов: рыболовству и аквакультуре, нефтяной и газовой промышленности, морскому туризму, портам, создателям и пользователям источников электроэнергии, гидрографии и научные исследованиям.


Пользователи 1

Доступ к морским ресурсам и акваториям находится в опасности от потери национальных и международных «экологических и/или социальных лицензий» в связи с влиянием как общественных, так и законодательных и административно – управленческих процессов принятия решений.

Пользователи 2

Также это относится к видам и районам деятельности, в которых какая-либо отрасль или промышленность не были ранее вовлечены на достаточно высоком профессиональном уровне развития и не имеют на настоящий момент необходимого опыта. Одновременно, такие проблемы создают возможные перспективы для взаимодействия и развития взаимовыгодного и более безопасного для экосистемы океана делового сотрудничества между различными отраслями и аспектами деятельности.

К сожалению, участники деловой активности в океане пока не вовлечены и не имееют достаточно скоординированного, системного и совместного подхода к принятию решений, как по отношению к деятельности в настоящем времени, так и по отношению к будущему. Это в свою очередь приводит к утраченным возможностям для сотрудничества, снижению эффективности и масштабности, рациональности и безопасности.

Отмечаются такие реалии настоящего времени, когда наиболее ответственные и состоявшиеся участники деловой активности в океане отделяют себя от безответственных, не развивают сотрудничество с единомышленниками и партнерами, не делятся прогрессивной экологически ценной информацией с общественностью и средствами массовой информации, не развивают конструктивных отношений с заинтересованными сторонами.

В настоящее время государственный и частный деловые сектора всех отраслей морской деятельности являются основными пользователями экосистемы океана. Именно они находятся в наилучшем положении для разработки практических ответственных решений, необходимых для обеспечения экологической безопасности и устойчивого использования ресурсов океана.

Некоторые организации и профессионально ориентированные ассоциации стараются вести и развивать бизнес на экологически устойчивой основе. Тем не менее, усилий только нескольких организаций или ассоциаций какого-либо одного сектора и даже нескольких морских отраслей, – не достаточно. Чтобы выработать общее и приемлимое решение для уменьшения или полного устранения негативного воздействия на окружающую среду в океане для какого-либо вида деятельности, необходимо коллективное, обоснованное и информированное участие в принятии решений всех участников деятельности в океане.

Развитие межсекторного сотрудничества и создание регионального альянса морских отраслей на Дальнем Востоке России, могло бы способствовать:

– Объединению широкого диапазона видов деятельности в океане;

– Повышению уровня безопасности использования экосистем мирового океана;

– Развитию взаимовыгодного международного и регионального сотрудничества на экосистемной основе;

– Обеспечению заслуженного лидерства организаций, применяющих наиболее безопасные, ответственные виды деятельности и методы использования акваторий и ресурсов океана;

– Прогрессу сотрудничества общественности и бизнеса на более конструктивной, информированной, объединенной основе;

– Развитию системы межсекторного мониторинга и анализа динамики изменений экосистемы океана на основе прикладных, наиболее эффективных и научно-обоснованных информированных решений;

– Использованию экосистемы океана на основе постоянного процесса прикладных усовершенствований, наилучших практических и утвержденных стандартов;

– Улучшению диалога и взаимопонимания между секторами морской индустрии и снижению количества конфликтных ситуаций;

– Обеспечению, поддержке и участию коллективных общественных и деловых, государственных и частных, региональных и глобальных, местных национальных и международных инициатив и действий в отношении изучения океана, обогащения и увеличения объема знаний прикладного значения;

– Cозданию структур (общественного, государственного, делового) управления и контроля предотвращения и предупреждения аварийных случаев нанесения ущерба ЭКОсистемам океана.

Roadmap for the Future Ocean Floor Mapping = The Nippon Foundation + GEBCO = OCEANS’seabed 2030

Seabed2030 ~ Executive Summary

About 71% of the Earth is covered by the World Ocean for which the bottom topography (bathymetry) is far less known than the surfaces of Mercury, Venus, Mars, and several planets’ moons, including our own.


Mapping through ocean water deeper than a few meters excludes the efficient use of electromagnetic waves such as radar and light, which forms the basis for methods used during terrestrial and extra-terrestrial mapping missions. While ocean surface height measured by satellites can be used to derive a coarse view of the ocean floor, it does not have sufficient resolution or accuracy for most marine or maritime activities, be it scientific research, navigation, exploration, shipping, resource extraction, fisheries or tourism.



Traditional bathymetric mapping techniques rely on acoustic mapping technologies deployed from surface or submerged vessels and require broad international coordination and collaboration towards data assimilation and synthesis.

Multybeam Bathymetry

In the opening address of the Forum for Future of Ocean Floor Mapping (FFOFM) in Monaco in June 2016, Mr. Yohei Sasakawa, Chairman of The Nippon Foundation, set forth the initiative to partner with GEBCO to cooperatively work towards seeing 100% of the World Ocean mapped by 2030.

This initiative led to the formulation of The Nippon Foundation – GEBCO – Seabed 2030, a global project within the framework of the General Bathymetric Chart of the Oceans (GEBCO) with the focused goal of producing the definitive, high resolution bathymetric map of the entire World Ocean by the year 2030. GEBCO, with its two parent organizations the International Hydrographic Organization (IHO) and the Intergovernmental Oceanographic Commission (IOC) of United Nations Educational, Scientific and Cultural Organization (UNESCO), has partnered with The Nippon Foundation to launch Seabed 2030, jointly driven by the strong motivation to empower the world to make policy decisions, use the ocean sustainably and undertake scientific research informed by a detailed understanding of the World Ocean floor.

Road to Seabed20130GEBCO2014
Based on GEBCO’s successful experiences of working with Regional Mapping Projects, the structure of Seabed 2030 rests on the establishment of teams of experts at Regional Data Assembly and Coordination Centres (RDACCs) and a Global Data Assembly and Coordination Centre (GDACC).

Structure of Seabed2030

The regional teams will be responsible for championing regional mapping activities as well as assembling and compiling bathymetric information within their prescribed region. The global team will be responsible for producing centralized GEBCO products and centralized data management for non-regionally sourced data. In ocean regions where strong mapping initiatives are already operational, Seabed 2030 will strive to avoid duplication and instead work towards fostering a close collaboration for the most efficient use of global resources.

UNmanned mapping barge

Multibeam Control Station on Ice Breaker ODEN


This Road Map expands on the underlying motivation for undertaking the Seabed 2030 project, presents the perspective on ocean mapping from the forum held in Monaco 2016, provides an update on how much of the World Ocean is currently mapped, further
outlines the Seabed 2030 project structure and plan, and identifies challenges and milestones ahead.



6.0. Identified Challenges

6.1. Mapping the gaps

There is no doubt that the mapping goal of Seabed 2030 presents a significant challenge considering that our analysis in section 4 shows that ~970 years would be required to survey the completely un-mapped part of the World Ocean using one modern multibeam vessel. The estimated 970 years does not even account for the fact that the quality of the bathymetric data varies substantially and that significant portions of the ocean floor must be remapped to meet modern standards. Even if more bathymetric data exist than used in our analyses, the Seabed 2030 mapping goal can only be achieved if new field mapping projects are initiated by many parties using many vessels. Crowd sourcing has proved to be a very powerful way to continuously add to the mapped portion of the World Ocean. Olex™ and TeamSurv™ are two examples of companies that have shown how fishing vessels and small pleasure boats equipped with echo sounders are extraordinary resources able to constantly “map”. The key to get all to contribute and share their data has been that something must be offered in return for doing so. The return from Olex™ and TeamSurv™ has been in the form of providing the contributors with better maps that, for example,help fishermen improve their fishing, divers find better dive sites and recreational boaters avoid running aground. However, crowd sourced bathymetry is today only effective for mapping the shallow continental shelf waters where most of the fishing and leisure boats sail with sonars that are able to collect bathymetric data. There are also data quality issues with crowd sourced bathymetry, but the huge number of contributed soundings have, to some extent, helped to filter out the noise. The largest industry fishing vessels may have low frequency echo sounders that perhaps reach about 3000 m water depth, but practically no non-survey or research vessels have a full ocean depth echo sounders installed. Considering that 50% of the World Ocean is deeper than 3200m (Figure 6.1), more than half is excluded from the current “crowd.” But this would change if more vessels are equipped with deep water echo sounders. Crowd source bathymetry is a phenomenal resource that has huge potential.

6.2. Bathymetry from sensitive areas

There are several regions of the World Ocean where bathymetric information may not be easy to get for reasons that may be considered political, for example areas where disputes over countries’ territorial waters or exclusive economic zone (EEZ) exist. In other international regions of the ocean, the offshore oil and gas industry may not be willing to share bathymetric data collected for exploration purposes due to competitive reasons and/or client confidentiality. Furthermore, the depth and shape of the ocean floor are considered information of military strategic importance in some countries, and high-resolution bathymetry data are therefore classified and access is restricted by national laws. All this presents a major challenge for Seabed 2030, and capacity building will be critical for addressing it. The international network of scholars from the Nippon Foundation-GEBCO postgraduate programme on ocean bathymetry hosted by the University of New Hampshire, USA, will continue to become an important resource in addressing this challenge. This programme, which began in 2004, has developed a network of more than 78 students from all over the world who will be important advocates for Seabed 2030, particularly as they move into senior positions within their national and academic organizations. Providing outreach materials and clear messaging will be important to facilitate their efforts. We anticipate that as more data are contributed to Seabed 2030, and its products are broadly distributed and recognized, there will be an increased willingness of new groups to contribute data. A critical aspect of the strategy is to establish early adopters, who will help create systems, processes, messaging and peer pressure that will help and encourage others to eventually follow.

6.3. Keeping up with technology

Ensuring that our strategy evolves to make use of new computing technologies, e.g. web services, cloud storage and computing, is a challenge that all long-term project face. This will be addressed though ongoing complementary efforts of Seabed 2030 team members as well as through dialog and partnership with industry. The most critical step we can take is to make sure that our processes, products and services are forward-looking and that our efforts will be well-positioned to make use of new technologies as they become available.


SeaBED2030~ROADmap for Future OCEANfloor Mapping

Объявление о запуске “Глобального проекта картографии морского дна 2030, направленного на 100% -ное завершение создания карты дна Мирового океана”


OCEANS’ seabed Mapping by NAUTILUS

О глобальном проекте “100% картография морского дна,- к 2030 году”

Дорога в будущее картографии дна мирового океана

Около 71% поверхности планета Земля покрыто океаном, топография (батиметрия) дна которого менее известна, чем топография таких планет солнечной системы как Меркурий, Венера, Марс и нескольких планет-спутников, включая спутник Земли (Луна).


Спутниковое картографирование “сквозь” океанскую воду на глубинах дна глубже чем несколько метров исключает эффективное использование электромагнитных волн и света, которые которые формирует основу методов, используемых во время наземных и внеземных картографических миссий.

Depth &amp; Height

В то время как высота поверхности океана, измеренная спутниками, может быть использована для получения грубого представления о дне океана, но она не имеет достаточного разрешения и точности для использования в большинстве секторов морской деятельности, будь то научные исследования, навигация, разведка и добыча ресурсов, судоходство, рыболовство и туризм.

Uncharted areas &amp; efforts required

Традиционные методы батиметрического картографирования морского дна основаны на акустических технологиях используемых с поверхностных или подводных судов и требуют создания и привлечения широкой международной координации и сотрудничества в области ассимиляции и обобщения данных.


Во вступительном слове форума «Будущее составления карт океанов» (FFOFM) в Монако в июне 2016 года, г-н Йохе Сасакава, Председатель Фонда «Ниппон», изложил инициативу по сотрудничеству с GEBCO , чтобы на 100% увидеть картографию дна мирового океана к 2030 году на 100%.

Эта инициатива привела к формированию глобального проекта “Фонд Nippon ~ GEBCO -~ Seabed 2030”, с целенаправленной деятельностью по созданию батиметрической карты высокого разрешения дна всего мирового океана к 2030 году.

GEBCO, вмете с двумя своими “родительскими” организациями: Международной Гидрографической Организацией (МГО) и Межправительственной Океанографической Комиссией (МОК) при Организации Объединенных Наций по вопросам образования, науки и культуры (ЮНЕСКО), сотрудничая с “Фонд Nippon”, запустили проект “Seabed 2030”, совместно управляемый для расширения возможностей принятия решений мирового уровня, использования океана на устойчивой основе, проводения научных исследований на основе иформированного и подробного понимания дна  Мирового океана.

Основываясь на успешном опыте GEBCO по работе с региональными картографическими проектами, картография морского дна 2030 будет основываться на создании и использовании групп экспертов для “Сбора региональных данных в координационных центрах (RDACCs) и для Глобального сбора данных в глобальном координационном центре (GDACC).

Road to Seabed20130

Structure of Seabed2030Multybeam Bathymetry

Региональные команды будут нести ответственность за проведение региональных картографических мероприятий, а также за сбор и компиляцию батиметрической информации в пределах их региона.


Глобальная команда будет отвечать за производство централизованных продуктов GEBCO и за централизованное управление данными в отношении районов не относящихся к уже обозначенным регионам.

В районах океана, где проводятся сильные картографические инициативы, проект

UNmanned mapping barge

Multibeam Control Station on Ice Breaker ODEN

Seabed 2030 будет стремиться избегать дублирования, и вместо этого, Seabed 2030 , будет работать в направлении развития тесного сотрудничества для наиболее эффективного использования глобальных ресурсов.

Multybeam Bathymetry

Эта «дорожная карта» расширяет возможности для реализации проекта Seabed 2030 и представляет: перспективу создания детализированной картографии дна океана начиная от форума проведенного в Монако в 2016 году; содержит обновленную информацию о том на какие части Мирового океана имеется картография; излагает структуру и план проекта Seabed 2030; определяет задачи и основные этапы работы.

SeaBED2030~ROADmap for Future OCEANfloor Mapping

Объявление о запуске “Глобального проекта картографии морского дна 2030, направленного на 100% -ное завершение создания карты дна Мирового океана”


“ОКЕАН3Д”,-прикладная информационная система ЭКНИС для обеспечения НАВИГАЦИИ и мониторинга ЭКОЛОГИИ использования морских акваторий

Акватории любых морских участков и их границы характеризуются  на основе четырех, экологически связанных друг с другом факторов:

Соответственно выше-названным факторам, существуют информационные параметры с помощью которых возможно осуществлять базовый экологичекий мониториг использования участков морских акваторий:

  •  Значения глубин определенного района морской акватории, координаты  каждого из значений глубин, данные анализа статистики данных  гидрографии района;
  •  Изобаты и рельеф морского дна, – в “3Д”;
  •  Гидрология ( температурные данные: поверхности океана / участка,  профиля глубин, дна,- океана ), – в “3Д”;
  •  Тип грунта дна морей и океанов, – в “3Д”

“ОКЕАН3Д”,- рекомендуемая система, наряду со своим основным прямым назначением использования как Электронной Картографии и Навигационной Информационной Системы  позволяет осуществлять мониторинг (накопление информации и ее анализ) экологических параметров (глубины, изобаты, температура, тип грунта морского дна) объемных пространств акваторий рыбоводных  участков


О проекциях земной СУХОПУТНОЙ, МОРСКОЙ и прочей картографии





Что мешает развитию российской аквакультуры? 

… подбор участков для культивирования гидробионтов должен осуществляться с учетом сочетания марикультуры с другими видами хозяйственной деятельности (прибрежное рыболовство, судоходство, рекреационная деятельность, особо охраняемые природные территории и т.п.).  При этом надо учитывать, что марикультурная деятельность возможна только на участках, удаленных от зон загрязнения, крупных пресноводных водотоков и имеющих благоприятные условия для обитания гидробионтов и установки гидробиотехнических сооружений.  В связи с этим подбор акватории для создания новых хозяйств марикультуры представляет собой комплексную задачу.

Для оценки эффективности организации работ на формирующемся рыбоводном участке необходимо получить полную информацию о местоположении, площади участка, гидрологических, экологических и этологических условиях, о видовом составе видов, обитающих в его пределах. Необходимо учитывать, что прибрежные морские участки характеризуются значительной вариабельностью условий – даже в пределах относительно небольшой бухты могут сочетаться участки с различной степенью защищенности, гидродинамикой, особенностями рельефа и т.д. …



Российская навигационная электронная гео-референсированная растровая картография и электронные данные о позициях планируемых прибрежных рыбоводных районов Приморского края

Marine Agriculture AREAS in Russian Far East.png

Навигационные-электронные растровые карты (No 62003 и 62004 издания 2013,  откорректированы в 2016 и действительны для использования в 2017; оригинал издания: в координатной системе “Пулково 1942”; електронный растровый формат: в системе координат WGS 84 ~ PZ 90-Pulkovo (2017);
Позиции и границы планируемых рыбоводных районов @    &      @
Позиционирование районов рыбоводных участков относительно данных навигационной карты  номер 62003  62003~ Marine Agriculture AREAS in Russian Far East

Расположение одного из прибрежных рыбоводных участков: район от бухты Краковка на севере и простирающийся от скал Крейсер в восточном (~ NorthEastEast) направлении. Данные относительно только поверхности океана: Площадь района 21км2+; периметр многоугольника района 33км2+.

Позиционирование района (далее условно названное “КРЕЙСЕР”)  относительно данных навигационной карты 62003

128 ~ 62003~ Marine Agriculture AREAS in Russian Far East

Позиционирование района “КРЕЙСЕР” на навигационную карту 62003 + карту изобат (на основе только предварительных данных глубин) района

Area 89 + NAVchart + Bathymetry Chart

Карта изобат района где все данные (базовая картография + карта предварительных данных изобат + координаты района рыборазводного участка “КРЕЙСЕР”) приведены к единой системе координат

Area 89 +Bathymetry

Примеры “Векторной” навигационной картографии изобат района в разных масштабах

Krakovka & around-s.png     Mys Laplasa & around-s.png

С(и)” ~ Объемная картография района в 3Д проекции, которая может автоматически дополняться и корректироваться в реальном времени на борту судна-обеспечения деятельности рыборазводного участка и использующего ОКЕАН3Д (полностью или внедряя ОКЕАН3Д поэтапно: навигация  > + накопление данных глубин >> +  база данных глубин в 3 Д >>> + тип грунта (биология) морского дна >>>> + гидрология >>>> + и т.д.)

Накопление данных глубин




3Д = Предполагаемые рельеф морского дна и изобатная информация участка “Крейсер”

Kreyser Marine Agri-Area


Пример картографии изобат промыслового района, приводимой ниже,  созданной и периодически обновляемой на основе данных глубин (более 4,000,000) промысловых судов использующих ОКЕАН3Д в период с 2006-2016

Навигационная карта 62003 и данные изобат промыслового района

Bathy Depth Data overlay over 62003

Навигационная карта 62004 и данные изобат промыслового района

Bathy Depth Data overlay over 62004

Навигационные карты 62003 и 62004 и данные изобат промыслового района

Bathy Depth Data overlay over 62003 &amp; 62004

Навигационные карта 61001 и данные изобат промыслового района

Bathy Depth Data overlay over 61001


Вариант информационной системы для использования в береговых условиях в офисе организации’ владельца рыбоводного участка = Информационное, Навигационное и Мониторинговое обеспечение управления использованием морской ЭКОсистемы Рыбоводного участка “КРЕЙСЕР” = Гидрография (глубины) + Батиметрия (изобаты и рельеф) + Тип морского дна (Биология)+ Гидрология (Температурный режим поверхности, профиля глубин, морского дна)

Info BASE for In Office System & at sea.png




Процесс сбора информации о глубинах и её авто-корректуры



Тип грунта морского дна

Авто-сбор информации о глубинах и типе грунта и ее авто-корректура

Type of Grounds


Отзывы об использовании “ОКЕАН3Д”


Тайны морских глубин:

75% поверхности планеты ОКЕАНов,- сегодня это мир неизвестности !


OCEANos Explorer

Between April 4 – April 21, 2017, we will conduct focused mapping operations and strategic mapping transits via NOAA Ship Okeanos Explorer within the waters of Western Samoa, American Samoa, and the Cook Islands. Operations will include the use of the ship’s deepwater mapping systems and the ship’s high-bandwidth satellite connection for real-time ship to shore communications, real-time sonar control from shore, and real-time video streaming of sonar screens and ship’s cameras.
“Прямая видео-трансляция с судна “ОКЕАНос ЭКСПЛОРер” (NOAA, the USA) = в период с 4 апреля по 21 апреля 2017 года = проводится комплекс целенаправленных картографических работ в Тихом Океане в районах островов Западного Самоа, Американского Самоа и островов Кука. Для связи с берегом и потоковой передачи информации от гидролокаторов и судовых видео камер иссследования включают в себя использование в РЕАЛЬНОМ времени глубоководных картографических систем и  высокоскоростной спутниковой связи судна с берегом (включая интернет)”



ОКЕАН3Д = ЭКНИС ~ Электронная Картографическая Навигационная Информационная Система


В комплект ОКЕАН3Д (в 2012 году сертифицирован в России в Российском Регистре Классификации судов и оборудования)

OCEAN3D ~ Flyer

входят основные следующие главные составляющие:

1. Компьютер

2. Електронное навигационное програмное обеспечение ~ “Cplot” 

3. Електронная навигационная картография “Cmap” 

4. PISCATUS3D” (ЛИНК to brochure – на русском языке )

Brochure in RU

 – может быть использован как в комплексе “ОКЕАН3Д”, так и независимо от Cplot & Cmap,- компьютерной программы, создающей карты рельефа дна для использования в рыболовстве. Программа разработана и используется с целью помочь рыбакам повысить эффективность (прибыльность)

“ОКЕАН3Д” – в РК “Восток1”, Владивосток, Россия, – 2008-2017

промысла за счет значительного снижения непроизводительных затрат и получения “БОЛЬШЕго ВЫЛОВа (+$$$) ~ за МЕНЬШЕе ВРЕМЯ (-$$$)”. При подключении “P3D”  к судовым GPS и эхолоту (как минимум), программа СОЗДАЕТ (ведет сбор, значительно дополняет, анализирует, корректирует, cохраняет данные гидрографии промысловых районов ~”XYZ+другие данные”) РЕАЛЬНЫЕ информационные базы данных по глубинам и изобатам морского дна района, где судно ведет промысел. На основе значительно дополненных данных создается подробная 3-мерная модель морского дна. С использованием более точных данных глудин ( рельефа + гидрологии + океанографии) непосредственно в промыслово-поисковой навигации и, что важно, -непосредственно & относительно морского дна, – промысловая производительность судна значительно повышается.

Piscatus3D- это совремнные технологии объемной картографии дна мирового океана, морей и озер, позволяющие:

  • повысить прибыльность и эффективность промысла;
  • обеспечить рациональность использования водных биологических ресурсов;
  • снизить уровень воздействия промысловой деятельности на водную среду океанов, морей, озер.

OCEANprojects INT. ~ P3D Poster ~ Vladivostok ~ Y 2009

Эффективное и прибыльное использование в рыбной промышленности

  • судовладельцами промысловых и научных-поисковых судов (промысел ярусами, тралами, ловушками, ставными неводами, кошельками и тд);
  • квотовладельцами промышленных и научных квот на рыбные ресурсы;
  • владельцами промысловых участков прибрежного промысла;
  • организациями и судами природо(рыбо)охраны;
  • учебными заведениями рыбной промышленности;
  • предприятиями аквакультуры;
  • центральными и региональными организациями и учреждениями контроля и управления использования рыбных ресурсов;
  • научно-производственными организациями, АССОЦИАЦИЯМИ и объединениями рыбной промышленности;
  • многими другими предприятиями и организациями рыбной промышленности.
  • Более подробная информация на сайте ~

Морской Вариант Использования  ~ ОКЕАН3ДЕлектронная Картография и Навигационная Информационная Система (ЭКНИС)


Береговой Вариант использования ~ Промыслово-Навигационный тренажер (ЭКНИС) и база данных глубин океана

ЭКНИС @ in Office

Место гибели “МH370” – в регионе Юго-Восточной части Индийского Океана

       Одним из побочных результатов поиска, – при участии 30 современных военных судов различных стран мира + подводных роботизированных аппаратов + поисковых самолетов + судов изучения океанографии океана, – пропавшего пассажирского лайнера “MH370” (Malaysian Airlines) является сбор и представление информации о гидрографии и батиметрии дна Индийского океана в “3Д”  c беспрецедентным уровнем детализации ландшафта, и после нескольких лет океанографических исследований и миллионов $$$ вложенных средств, чтобы только понять:

как мало “мы” знаем об океане 


что нужно чтобы знать больше


@ Более подробно … (авто-перевод с английского на русский by GOOGLEtranslate)

“О прикладном использовании информации о температуре поверхности океана в рыбо-поисковой и промысловой навигации”

11 Июля 2017 ~ Температура поверхности Океана в районах восточнее Южно-Курильских и Японских островов

OCEANsurface-TEMP-1monthRECORDS-JUne-11july2017+1weekFORECast.gif Kuroshio-Last12monthe~June2016-June2017

19 Июня 2017 ~ Использование Температуры Поверхности Океана в поисково-промысловой навигации ~ PDF

Температура океана является одной из наиболее доступных для наблюдений из всех других характеристик океана (течения, соленость, плотность), как среды обитания объектов промысла (тунец, скумбрия, ставрида, иваси, сайра) и может служить дополнительным рыбопоисковым и промысловым параметром определяющим перемещения судна в промысловом районе. Практически любой вид рыбы может быть охарактеризован как «холодно-кровный» биологический объект, который вынужден, с помощью миграций в среде обитания, регулировать свои био-процессы: нагул, нерест, питание. Чем ближе к поверхности океана ареал обитания определенных объектов промысла, тем выше интенсивность их миграций.

Возможности совместного использования картографии распределения температуры поверхности океана («ТПО») и собственных наблюдений за изменениями ТПО в условиях промыслового судна, – являются важными факторами способными оказать положительное воздействие на результативность (эффективность) промысла в целом.


19 Июня 2017:  Комплексный подход ученых к изучению возможностей и проблем промысла пелагических видов  для пользователей этих ресурсов: ООО «Чукотрыбпромхоз», ООО «Сигма Марин Технолоджи», ООО «Антей», ПАО ХК «Дальморепродукт», Рыболовецкий колхоз им. В. И. Ленина, ОАО “Рыболовецкий колхоз «Новый Мир», Крайрыбакколхозсоюз, ПАО «НБАМР», ООО «Софко», ООО «Нортстрим Марин»

Май 2017: Ученые проконсультируют рыбаков по вопросам промысла пелагических объектов : В путину 2017-го, на промысле в районах Южных Курил и 200-мильной ИЭЗ Японии, рыбаки будут вынуждены идти на значительнее затраты как топлива так и промыслового времени, в результате чего экономические потери могут быть внушительными

Вести с путины 2016

План на 2016:

“ ~ 10 февраля 2016
Крупным добывающим компаниям предложено организовать вылов сардины иваси и скумбрии уже в ближайшие месяцы. Представители промышленности согласились выделить суда для проведения экспериментальной путины этих видов. Также для освоения иваси и скумбрии планируется организовать в 2016 году штаб промысловой экспедиции по аналогии с другими объектами лова (минтая, лосося, сайры, краба), а также отправить для мониторинга научно-исследовательское судно. Также в ходе российско-японской комиссии по рыболовству было достигнуто соглашение о выделении на этот год 27 тыс. тонн сардины иваси и скумбрии и 4 тыс. тонн лемонемы в исключительной экономической зоне Японии. Объемы лова в российской экономической зоне пока не ограничены. По данным ТИНРО,- “Освоение этих ресурсов уже в близкой перспективе позволит увеличить вылов на 150-200 тыс. тонн”. Те предприятия, которые не заняты зимне-весенним промыслом минтая, смогут получить хорошие уловы уже подзабытой за четверть века рыбы из глубин Тихого океана.

Промысел в 2016:

Россия и Япония договорились об условиях промысла на 2017 год – 8 Dec 2016

Рыбаки Приморья шарахаются от этой рыбы  ~ – 21 Nov 2016

Сайровая путина на Дальнем Востоке завершилась на отметке вылова в 14 тыс. тонн. По данным ТИНРО-Центра, такой объем аналогичен уровню 2014 и 2009 гг. – – 17 november 2016

Путина закончена.Общий вылов скумбрии достиг 7,1 тыс. тонны. Средний вылов на судосутки лова составлял 39 тонн – – 07 Ноября 2016

Российские и японские ученые обсудили предварительные итоги промысла трансграничных объектов – – 25 Октября 2016
Российскими рыбаками на Дальнем Востоке добыто 6,7 тыс. тонн сардины-иваси и 4,6 тыс. тонн скумбрии – – 19 Октября 2016

Промысел скумбрии,иваси, сайры, ~ – 13 Октября 2016.

Информация о промысле скумбрии, сардины-иваси, сайры в 2016 году ~ от – 29 Сентября 2016;

Март- Апрель -Август 2016 , , ТИНРО, Росрыболовство = Планы, прогнозы, – промысел сайры 2016 и возобновление промысла скубрии, сардины-иваси в 2016 после 25 летнего перерыва.


Температура поверхности океана (ТПО) в регионе течения Куросио

Surface OCEAN Temperature (SOT) in Kuroshio Region

Информация за период с 23 октября 2016 по 22 ноября 2016 ( 1 неделя = прогноз; 3 недели = прошедший период)



14 November 2016

Surface OCEAN Temperature in Kuroshio Region


Районы характеризующиеся «затоками» течений и высокими значениями температурных градиентов, – где “более холодные стороны фронтальных” и/или «затоковых» зон, – являются наиболее вероятными для местонахождения наилучших в промысловом отношении концентраций таких целевых объектов промысла как скумбрия, сардины-иваси, сайра, тунец, меч рыба и тд.

Максимизация времени место-нахождения судов в наиболее продуктивных в промыслoвом отношении районах с высокими значениями температурных градиентов и оптимальными для целевых объектов промысла диапазонами ТПО (температура поверхности океана) , – позволяет обеспечивать эффективность промысловой деятельности

Прототип суточного оперативного промыслового прогноза перспективных районов (как вне ИЭЗ так в их пределах) промысла для 14 Ноября 2016 года


Позиции рыбо-промысловых судов Китая, Южной Кореи, Японии, и Тайваня


Суточный прогноз продуктивных районов промысла скумбрии в диапазоне ТПВ 12-14 грудусов и действительные позиции промысловых судов на 14 Ноября 2016 (в пределах ИЭЗ и вне их)


Позиционирование промысловой деятельности относительно:

  • фронтальных зон ТПО (температура поверхности океана), и их более прохладных или более теплых сторон;
  • затоков ТПО;
  • зон оптимальных сезонных диапазонов ТПО, применимых для целевых объектов промысла в конкретный период времени;
  • районов, где градиенты значений ТПО достигают максимальных значений



10 Ноября 2016 ~ Температура Поверхности Океана – Промысловые суда – Границы 200-мильных ИЭЗ России и Японии


Источники информации (?)инструменты измерения (?), эффективность  (?) применения при решении вопросов оперативного управления промысловым флотом (?) и, непосредственно , – использования (?) в поиcково-промысловой навигации (?) на промысле скумбрии, сардины-иваси, сайры, – в 2016 (?) -2017 (?)


Март- Апрель -Август 2016 , , ТИНРО, Росрыболовство = Планы, прогнозы, – промысел сайры 2016 и возобновление промысла скубрии, сардины-иваси в 2016 после 25 летнего перерыва и планы на путину 2017 (?)

В 2016, – «НИС Профессор Кагановский» в период ИЮНЬ 2016, в ходе рыбо-поисковго рейса в северо-западной части Тихого океана, как пределах ИЭ 200-мильной зоны России, так вне её, – зафиксировал более 600 тысяч тонн сардины и 400 тысяч тонн скумбрии (ТИНРО) на акватории площадью более 500,000 квадратных миль (“O3D”) :



Также в 2016, – «НИС ТИНРО», в период ИЮЛЬ-СЕНТЯБРЬ 2016, в ходе рыбо-поисковго рейса в северо-западной части Тихого океана (акватория площадью более 200,000 квадратных миль ~”О3D”), как пределах ИЭ 200-мильной зоны России, так вне её, –

FR vessel TRACK - TINRO - July-September - 2016.png

подтверждал ранее выданные промысловые прогнозы.





Температура поверхности Океана ( 15 Июля 2016 )  

и перемещения рыбо-перерабатывающего завода “Всеволод Сибирцев”

в период с 7 июня 2016 по 31 Июля 2016  


Температура поверхности Океана ( 20 Июля 2016 )  

и перемещения рыбо-перерабатывающего завода “Всеволод Сибирцев”

в период с 7 июня 2016 по 31 Июля 2016  



О температуре поверхности океана

09 Ноября 2016  & 08 Ноября 201607 Ноября 2016 & 06 Ноября 2016

Северо-Запад Тихого Океана 

Температура поверхности в регионе Куросио





и наибольшие концентрации промысловой деятельности относительно центральных координат группы состоящей из “50+ ” рыбопромысловых судов

@ 38 30 N – 146 30 E = 09 November 2016

Позиции рыбо-промысловых судов 09 ноября 2016, относительно 

Температуры Поверхности Океана в регионе течения Куросио 09 Ноября 2016:



8 Ноября 2016

Позиции рыбо-промысловых судов 08 ноября 2016, относительно Температуры Поверхности Океана в регионе течения Куросио 08 Ноября 2016:


@ 39 25 N – 148 30 E  = 09 November 2016

FVs=09nov2016=0800localUTC=38 30 N - 146 30 E Radius 120 miles.png

7 Ноября 2016

Позиции рыбо-промысловых судов 07 ноября 2016, относительно:

  • Температуры Поверхности Океана в регионе течения Куросио 07 Ноября 2016;
  • Картографии изобат ( ~ 250 м ) региона восточнее Японских и Южно-Курильских островов;
  • Границ 200-мильных исключительных экономических зон России и Японии;
  • Навигационной картографии региона восточнее Японских и Южно-Курильских островов;
  • 3-мерной объемной картографии изобат региона северо-западной части Тихого океана включая Японское и Охотское моря



  ведущих лов пелагических объектов промысла ,- в районах высокоградиентных зон («затоков холодных вод»  + «фронтальных зон») распределения температуры поверхности океана.

Анимация изменений ТПВ за период 1-го месяца: 22 Октября -21 Ноября 2016

3 – недели “прошлое”,1 неделя – прогноз


Сила ВЕТРА, направление = 09 Nov 2016 = 0800 local UTC

09 Nov 2016.png


4 Ноября 2016

Позиции рыбо-промысловых судов 04 ноября 2016, относительно:

  • Температуры Поверхности Океана в регионе течения Куросио 04 Ноября 2016;
  • Картографии изобат ( ~ 250 м ) региона восточнее Японских и Южно-Курильских островов;
  • Границ 200-мильных исключительных экономических зон России и Японии;
  • Навигационной картографии региона восточнее Японских и Южно-Курильских островов;
  • 3-мерной объемной картографии изобат региона северо-западной части Тихого океана включая Японское и Охотское моря



20 – 31 Октября 2016 ~ расположение промыслового флота ~

CH=55%, JP=20%, RU=5%, SK=10%, TW=5%, & другие=5%

FVs=20 - 31 oct 2016 = NWpacific.jpg

15 – 25 Октября 2016 – расположение промыслового флота 


26 Октября 2016  

Температура поверхности в северо-западной части Тихого океана


26 Октября 2016 = наибольшее колличество промысловых судов (Китай, Россия, Южная Корея, Япония) расположено вне 200-мильных ИЭЗ, но по прежнему в районах температурных фронтальных зон и “затоков” , – т.е. районах поверхности океана характеризующихся высокими значениями температурных градиентов (отношение: величины изменения значений ТПВ между  двумя определенными точками, –  к растоянию  или  дистанции между ними)



ТПВ 09 ноября 2016   ТПВ 08 Ноября 2016    ТПВ 07 Ноября 2016   ТПВ 06 Ноября 2016   ТПВ 05 Ноября 2016    ТПВ 04 Ноября 2016   ТПВ 03 Ноября 2016   ТПВ 02 Ноября 2016   ТПВ 01 Ноября 2016   ТПВ 31 Октября 2016    ТПВ 30 Октября 2016    ТПВ 29 Октября 2016     ТПВ 28 Октября 2016   ТПВ 27 Октября 2016    ТПВ 26 Октября 2016    ТПВ – 25 Октября 2016   ТПВ – 24 Октября 2016    ТПВ – 23 Октября 2016    ТПВ – 22 Октября 2016


Позиции рыбо-промысловых судов Китая, России, Тайваня, Южной Кореи за период 24 Сентября – 23 Октября 2016 года – в районах промысла восточнее Южно-Курильских и Японских островов  



Навигационная картография районов промысла восточнее Южно-Курильских островов и Японии


Промысловые акватории пространств океана, являющихся в свою очередь средой обитания целевых объектов промысла подвержены постоянному интенсивному воздействию таких основных климатических явлений как:

Океанических течений (Куросио)



Wind=19 Oct 2016.png

Солнечной энергии и других гидро-метео- факторов


Наиболее доступной для измерений в условиях промыслового судна , но и одной из наиболее важных характеристик среды обитания объектов промысла, – является температура поверхности океана.

В качестве экспериментального (и бесплатного на период 15 дней) пакета услуг, «ОКЕАН» Ltd (Владивосток, предлагает ежесуточное обеспечение промысловых судов информацией о температуре поверхности океана («TПО» ~ “SОT“) для вышеназванных районов промысла. Для упрощения возможности получения информации о ТПО непосредственно в море, – рекомендуется использовать (удобство и возможность настройки и использования интерфейса Вашего почтового “ящика” на русском языке, сохранность больших объемов архивной информации ~ до 15 Gb ~ о ТЕМПЕРАТУРЕ ПОВЕРХНОСТИ ОКЕАНА ~ в течении продолжительного периода времени, конфиденциальность и надежность ) возможности электронной почты (FVowner~OrganisationName.SО и fishingVesselName.SО
  • Период первых “5 дней”, ~ c cогласия и по запросу судовладельца, на адреса промысловых судов (каждое в отдельности) может ежедневно отправляться СУТОЧНАЯ картография ТПО;


  • Период вторых “5 дней”, ~ суточная ТПВ + Анимация ТПО за период 1-го месяца: данные ТПВ “прошлого” за период 3-х недель +1~недельный прогноз;


  Анимация изменений ТПВ за период 1-го месяца:

3 – недели “прошлое”,1 неделя – прогнозLink to Animated SWT.png

  • Последние 5 дней экспериментального и беплатного периода: каждому в отдельности промысловому судну может быть предложено загрузить и установить на одном из судовых компьютеров, – програмное обеспечение, с помощью которого возможно будет проецировать предварительно подготовленные нами файлы с данными о ТПО и которые могут буть использованы совместно с электронной навигационной картографией, текущей позицией судна, в реальной системе координат и динамике происходящих навигационных поисково-промысловых событий, по ходу следования судна во время поиска и промысла.





В случае заинтересованности, просим сообщить на следующее: наименование судна и судовладельца, адреса электронной почты судна и судовладельца (при пересылке картографии ТПВ по электронной почте в адрес промыслового судна находящегося в море на промыcле, – дублирование e-mail предназначенной для судна в море на адрес почты судовладельца на берегу, – для, – обязательна).

“О картографии температуры воды поверхности океана и ее использовании в поиcково-промысловой навигации”

Находясь на промысле и имея возможность ежесуточно анализировать распределение температуры поверхности в районе промысла, судоводитель промыслового судна может практически использовать температуру среды обитания объектов промысла в качестве дополнительного рыбопоискового и навигационного параметра

  • значения ТПО в определенных точках: координаты и значения ТПО для позиций 1.; 2.; 3.; и т.д.);
  • величина градиента ТПО  = изменения ТПО ( разница значений ТПО для позиций 1. и 2.;  2. и 3.;  1. и 3.; ) относимое к дистанции в милях между позициями точек 1. и 2.;  2. и 3.;  1. и .3.; и т.д.);
  • Величина градиента ТПО и его направление , – могут являться  определяющими навигационно-поисковыми параметрами перспективных промысловых районов с наиболее вероятными концентрациями промысловых скоплений целевых объектов промысла: скумбрии, сельди-иваси, сайры, тунца, ставриды.

Картография ТПО (10 Октября 2016) + позиции Российских промысловых судов в период с 10 Сентября 2016 по 09 Октября 2016 в пределах ИЭЗ России, юго-восточнее о.Шикотан; + позиции промысловых судов Китая + Тайваня + Южной Кореи + Японии, – вне ИЭЗ России (также за период с 10 Сен по 09 Окт 2016)


C помощью такого информационного обеспечения возможно:

–               вести оперативный поиск и установление границ течений (течение Куросио + Курильское течение) и их направлений;

–               вести поиск и определение географических координат положения:

–               поверхностных фронтальных  зон ТПО (районы с максимальным значениями       горизонталных градиентов температуры);

–               акваторий морских пространств с интенсивным подъемом высоко-продуктивных глубинных вод («Upwelling / s»);

–               районов характеризующихся «затоками» течений и высокими значениями температурных градиентов, и где, – с “более холодной стороны фронтальных” и/или «затоковых» зон, – наиболее вероятно местонахождение лучших в промысловом отношении концентраций целевых объектов промысла;

–               обеспечивать максимизацию времени место-нахождения судна в наиболее продуктивных в промыслoвом отношении районах с оптимальными для целевых объектов промысла диапазонами ТПО.

Картография ТПО (17 Октября 2016) + електронная навигационная картография = промысловые районы юго-восточнее о.Шикотан и возможные районы промысла в пределах 200-мильной ИЭЗ Японии


Процесс (вариант) использования карт ТПО непосредственно в море, на промысле:


Удачи !

В качестве справочной информации о температуре поверхности воды и её использовании в поисково-промысловой навигации могут быть рекомендованы следующие издания (их загрузка в открытом доступе, в Adobe Reader.PDF формате):

1. Справочник капитана промыслового судна ( стр. 268-269, 1990, CCCР);


2. Промысловая океанография, T.Levastu & U.Hena (перевод с английского, 1974, СССР).


E-mail:       Телефон:  +7-924-241-9003         ВЛАДИВОСТОК      Россия



Россия и Япония договорились об условиях промысла на 2017 год – 8 Dec 2016

Рыбаки Приморья шарахаются от этой рыбы  ~ – 21 Nov 2016

Сайровая путина на Дальнем Востоке завершилась на отметке вылова в 14 тыс. тонн. По данным ТИНРО-Центра, такой объем аналогичен уровню 2014 и 2009 гг. – – 17 november 2016

Путина закончена.Общий вылов скумбрии достиг 7,1 тыс. тонны. Средний вылов на судосутки лова составлял 39 тонн – – 07 Ноября 2016

Российские и японские ученые обсудили предварительные итоги промысла трансграничных объектов – – 25 Октября 2016
Российскими рыбаками на Дальнем Востоке добыто 6,7 тыс. тонн сардины-иваси и 4,6 тыс. тонн скумбрии – – 19 Октября 2016

Промысел скумбрии,иваси, сайры, ~ – 13 Октября 2016.

Информация о промысле скумбрии, сардины-иваси, сайры в 2016 году ~ от – 29 Сентября 2016;

Март- Апрель -Август 2016 , , ТИНРО, Росрыболовство = Планы, прогнозы, – промысел сайры 2016 и возобновление промысла скубрии, сардины-иваси в 2016 после 25 летнего перерыва.