Category Archives: Uncategorized

RESEARCH ON UPWELLING in the US & RU

RESEARCH ON UPWELLING

New research on upwelling that drives US west coast marine ecosystem. Scientists have described new “upwelling indices,” which represent a breakthrough in understanding the biological engine that drives the West Coast of North American marine ecosystem.

Great volumes of nutrient-rich water welling up from the deep ocean fuel the West Coast’s great diversity of marine life. Now scientists using satellite images, research buoys, ocean models, and other ocean monitoring tools have brought the upwelling into much sharper focus, measuring even the velocity of the water and the amount of nutrients that it delivers.

Scientists described new “upwelling indices,” which represent a breakthrough in understanding the biological engine that drives the West Coast marine ecosystem.

“Upwelling is vital to marine life along the West Coast, but the tools we were using to monitor it hadn’t changed much in almost 50 years,” said Michael Jacox, a research scientist at NOAA Fisheries’ Southwest Fisheries Science Center who developed the new indices. “Now we’re bringing state-of-the-art tools and the latest science to bear to help us understand how upwelling supports and shapes the California Current Ecosystem.”

Given the ecological importance of upwelling, scientists and managers are eager for indices that allow them to monitor its variability and understand its impacts on coastal ocean ecosystems.

Jacox, of the Southwest Fisheries Science Center and NOAA’s Earth System Research Laboratory, and other researchers from NOAA Fisheries, and the University of California at Santa Cruz, recently published the new upwelling measurements new upwelling measurements  in the Journal of Geophysical Research: Oceans and the indices are also available online. Maps based on the indices reveal through color-coding where upwelling is most pronounced, such as off Cape Mendocino in California.

Upwelling occurs along certain coastlines around the world where winds and the Earth’s rotation sweep surface waters offshore, drawing deep, cold, and salty water full of nutrients up to the surface. These nutrients fuel growth of phytoplankton that form the base of the marine food web, and ultimately nourish the West Coast’s ocean ecosystem from sardines to sperm whales.

“We’ve never had the kind of resolution to see all this before,” said Toby Garfield, director of the Southwest Fisheries Science Center’s Environmental Research Division. “This gives us a much better understanding of the nutrient supply that’s really getting at the drivers at the base of the food chain.”

Earlier upwelling indices based on theory developed in the early 1900s relied on coarse atmospheric data. The “Bakun index”, developed by a Southwest Fisheries Science Center researcher in the early 1970’s, has long served as an instrumental resource in oceanographic and fisheries research along the West Coast. The new indices incorporate additional marine data and technological advances in ocean modeling to calculate the strength of upwelling as well as the nutrients it contributes, in 17 locations along the West Coast ~ https://fishfocus.co.uk/new-research-on-upwelling/

==========================

Upwelling Indices for the U.S. West Coast

Coastal upwelling is responsible for thriving marine ecosystems and fisheries that are disproportionately productive relative to their surface area, particularly in the world’s major eastern boundary upwelling systems …

=====================================

in RU ~ briefly by Google Translate ~  @ https://translate.google.com.au/?hl=en&tab=TT

НОВЫЕ ИССЛЕДОВАНИЯ ПО UPWELLING ~ Большие объемы богатой питательными веществами воды, поступающей из глубокого океана, питают огромное разнообразие морской жизни

Эти питательные вещества способствуют росту фитопланктона, который формирует основу морской пищевой сети, и в конечном итоге питают океаническую экосистему Западного побережья от сардин до кашалотов.

Новое исследование апвеллинга, которое движет морской экосистемой западного побережья США. Ученые описали новые «индексы апвеллинга», которые представляют собой прорыв в понимании биологического двигателя, который движет западным побережьем североамериканской морской экосистемы.

Большие объемы богатой питательными веществами воды, поступающей из глубокого океана, питают огромное разнообразие морской жизни Западного побережья. Теперь ученые, использующие спутниковые снимки, исследовательские буи, модели океана и другие инструменты мониторинга океана, привлекли внимание к апвеллингу, измеряя даже скорость воды и количество питательных веществ, которые она поставляет.

Ученые описали новые «индексы апвеллинга», которые представляют собой прорыв в понимании биологического двигателя, который управляет морской экосистемой Западного побережья.

«Апвеллинг жизненно важен для морской флоры и фауны на западном побережье, но инструменты, которые мы использовали для мониторинга, почти не изменились почти за 50 лет», – сказал Майкл Джейкс, научный сотрудник Научно-исследовательского центра рыбного хозяйства юго-запада NOAA Fisheries, который разработал новые показатели. «Теперь мы приносим самые современные инструменты и новейшие научные разработки, чтобы помочь нам понять, как апвеллинг поддерживает и формирует нынешнюю экосистему Калифорнии».

Учитывая экологическую важность апвеллинга, ученые и руководители стремятся к показателям, которые позволяют им отслеживать его изменчивость и понимать его воздействие на экосистемы прибрежных океанов.

Jacox из Юго-западного научного центра рыбного хозяйства и Лаборатории исследования системы Земли NOAA, а также другие исследователи из Рыболовного управления NOAA и Калифорнийского университета в Санта-Крузе недавно опубликовали новые измерения апвеллинга, новые измерения апвеллинга в Журнале геофизических исследований: океаны и индексы также доступны онлайн .

Карты, основанные на индексах, показывают через цветовое кодирование, где апвеллинг наиболее выражен, например, у мыса Мендосино в Калифорнии.

Апвеллинг происходит вдоль определенных береговых линий по всему миру, где ветры и вращение Земли охватывают поверхностные воды в море, вытягивая глубокую, холодную и соленую воду, полную питательных веществ, на поверхность. Эти питательные вещества способствуют росту фитопланктона, который формирует основу морской пищевой сети, и в конечном итоге питают океаническую экосистему Западного побережья от сардин до кашалотов.

«У нас никогда не было такого решения, чтобы увидеть все это раньше», – сказал Тоби Гарфилд, директор Отдела экологических исследований Юго-Западного научного центра рыбного хозяйства. «Это дает нам гораздо лучшее представление о питательных веществах, которые действительно влияют на водителей в основе пищевой цепи».

Более ранние индексы апвеллинга, основанные на теории, разработанной в начале 1900-х годов, основывались на грубых атмосферных данных. «Индекс Бакуна», разработанный исследователем из Юго-Западного научного центра рыбного хозяйства в начале 1970-х годов, долгое время служил инструментальным ресурсом в океанографических и рыбных исследованиях вдоль западного побережья. Новые индексы включают дополнительные морские данные и технологические достижения в моделировании океана для расчета силы апвеллинга, а также питательных веществ, которые он вносит, в 17 местах вдоль западного побережья.

«Картина, которую мы получаем из этих индексов, является более точной и точной, поэтому мы получаем более четкое представление о том, что движет системой», – сказал Джакокс. «Это позволяет лучше представить отношения, которые люди пытаются исследовать между динамикой океана и морской жизнью».

Например, исследователи, изучающие рыболовство или другую морскую флору и фауну, могут использовать индексы, чтобы понять, как рыба и морские млекопитающие реагируют на изменения в апвеллинге и питательных веществах в экосистеме. Индексы помогают выявить последствия изменения состояния океана у западного побережья, которое в последние годы испытывало необычайно теплые температуры, которые затронули многие виды.

================

Апвеллинг (англ. upwelling) или подъём — это процесс, при котором глубинные воды поднимаются к поверхности. Наиболее часто наблюдается у западных границ материков, где перемещает более холодные, богатые биогенами воды с глубин океана к поверхности, замещая более тёплые, бедные биогенами поверхностные воды. Также может встречаться практически в любом районе мирового океана

What is UPwelling 2

Различают как минимум четыре типа апвеллинга: прибрежный апвеллинг, крупномасштабный ветровой апвеллинг в открытом океане, апвеллинг связанный с вихрями, апвеллинг связанный с топографией.

Красным показаны районы где наиболее распространён прибрежный апвеллинг.

UPwelling Regions

Прибрежный апвеллинг — это наиболее известный тип апвеллинга, который непосредственно связан с человеческой деятельностью, поскольку поддерживает наиболее продуктивные рыболоведческие районы мирового океана. Глубинные воды богаты биогенными элементами, такими как натрий и фосфор, которые являются результатом декомпозиции погружающегося на глубину органического материала (в основном отмершего планктона). Когда глубинные воды попадают на поверхность, фитопланктон начинает активно потреблять биогены, вместе с CO 2 (диоксид углерода) и солнечной энергией, производя органические вещества в процессе фотосинтеза. Таким образом, по сравнению с другими зонами океана, в районах апвеллинга наблюдается высокая первичная продукция (количество углерода, зафиксированное фитопланктоном).

What is UPwelling

Физический механизм, приводящий к прибрежному апвеллингу, связан с силой Кориолиса, в результате действия которой Физический механизм, приводящий к прибрежному апвеллингу, связан с силой Кориолиса, в результате действия которой ветровые течения имеют тенденцию отклоняться вправо в Северном полушарии и влево в Южном полушарии.

Phisics

====================================

 

ECOsystems ~ Ecology & Security & UPwellings

ECOsystem ~ Ecology & Security

==============================

by OCEAN3Dprojects@gmail.com

ECOsystem No.50 ~ Japan Sea ~ Hydrology & Depths’ Data for seabed area in between 39 30 N ~ 40 30 N & 133 08 E ~ 135 49 E & within the limits of RU 200-miles EEZ

Fishing Vessel’s NEW Fishing Ground Research Track for the period of 1 month from 20 March 2019 to 20 April 2019 @ north of Yamato Ridge’s seabed ~ @ the central area of JAPAN SEA ~ within the limits of RU 200-miles EEZ

ECOsystem No.50 ~ Japan Sea: Hydrology, – Sea Surface TEMPERATURE ~ 12 Months’ Animation 

SSTemperature~JapanSea~12months.gif

& Sea Surface Currents ~ Speed & Diection ~ 12 Months’ Animation

SScurents~JapanSea~12months.gif

============================

Geo Grid & Depths’ Data & its Bathymetry for seabed area in between 39 30 N ~ 40 30 N & 133 08 E ~ 135 49 E ~ Northern part of Yamato Ridge’ seabed ~ JAPAN SEA ~ within the limits of RU 200-miles EEZ  ~ in computer & Ipad & Iphone

in Computer & Ipad & Iphone

OCEAN3D ~ in Computer & Ipad & Iphone ~ b.png

OCEANS’ Fishing Grounds’ Depths DATAbase & NAV’ system~ on your Iphone & Ipad & Computer

 

Japan Sea’s Seabed ~ Yamato Ridge

60100_JPGcompressed

3D ~ Seabed Columb

Geo Grid & Depths’ Data & its Bathymetry

GEOgrid & Depths Data & WaterSheds & StreamLines’ Intersections 

GEOgrid & WaterSheds & StreamLines’ Intersections & UPwellings

GEOgrid & WaterSheds & StreamLines’ Intersections & UPwellings Bathymetry

GEOgrid & Depths’ Data & Bathymetry & UPwellings in 3D

 

Geo Grid & Depths’ Data & its Bathymetry for seabed area in between 39 30 N ~ 40 30 N & 133 08 E ~ 135 49 E in Japan Sea within the limits of RU 200-miles EEZ

Click title to show track
GEOgrid & RU EEZ Border
Depths' Grid
WaterSheds & Streamlines' Intersections & UPwellings
Bathymetry

==============================

by OCEAN3Dprojects@gmail.com

«Пробелы» и “чувствительные зоны”в картографии дна мирового океана

Briefly translated  “Roadmap for Future Ocean Floor Mapping ~ Seabed by 2030” with the assistance of Google Translate

«Пробелы» в картографии дна Мирового океана

Несомненно то, что достижение цели проекта «Картография Дна морей и океанов – 2030» представляет собой большую проблему.

В соответствии с анализом имеющейся информации получается, что если использовать 1 гидрографичекое судно с многолучемым гидролокатором, то потребуется 970 лет для создания картографии районов морского дна, где данные глубин на данный момент отсутствуют.

«970 летний» период не учитывает факт того,  что качество данных гидрографии дна океанов и морей существенно варьируется. Многие данные глубин океана должны быть изучены вновь, чтобы привести их в соответствии с современными стандартами.

UNmanned mapping barge

Даже если существует больше данных гидрографии морского дна, чем используется в анализировании «проекта», то цель «проекта картографии морского дна 2030» может быть достигнута только в том случае, если другие пользователи пространств и ресурсов океана инициируют работу многих других проектов связанных получением новых и дополнением и корректировкой существующих данных глубин картографии дна океана.

«Общественный» источник получения данных глубин оказался мощным способом постоянного пополнения данных глубин Мирового океана.

Olex ™ и TeamSurv ™ – это два примера компаний, которые смогли показать, как рыболовные суда и небольшие прогулочные катера, оснащенные эхолотами, являются необычными информационными ресурсами, способными постоянно «отображать данные глубин океана».

Ключом к тому, чтобы все пользователи морских пространств и ресурсов могли внести свой вклад и поделиться своими данными о глубинах дна морей и океанов, явилось то, что в «ответ» на получение данных глубин от морского сообщества, нужно было что-то предложить взамен.

«Возвратом» от Olex ™ и TeamSurv ™ явилось предоставление «вкладчикам БАНКА данных глубин морей и окенов» более качественной картографии морского дна которая помогла и продолжает помогать:

  • рыбакам улучшать эффективность промышленного и любительского рыболовства;
  • любителям подводного мира искать, находить и использовать лучшие места для подводного плавания
  • владельцам небольших любительских судов, избегать посадок на мель.

Однако данные глубин морского дна полученные от пользователей морских пространств, сегодня эффективны только для картографии мелководных вод континентального шельфа, районов плавания небольших рыболовных и прогулочных судов имеющих на борту эхолоты и гидролокаторы, которые могут собирать данные глубин морского дна.

Существуют также проблемы с качеством данных глубин морского дна полученных от пользователей морских пространств. Но  огромное количество данных глубин морского дна вносимых «морской общественностью» помогает в некоторой степени отфильтровывать отдельные погрешности в точности данных глубин.

На больших промысловых рыболовных судах могут иметься низкочастотные эхолоты, которым доступны глубины около 3000 м и более, но не-специализированные суда включая различные таковые исследовательские не имеют эхолотов способных достичь максимальных глубин морского дна  океана. Учитывая, что 50% Мирового океана имеет глубину более чем 3,200 м (рис. 6.1), то более половины мирового океана и его глубины практически недостуны большиству пользователей морских пространств и ресурсов.

Depth & Height

Но и это может изменится, если большее колличество  судов будет оснащаться глубоководными эхолотами. Данные глубин морского дна от пользователей  пространств и ресурсов мирового океана , – это феноменальный ресурс, обладающий огромным потенциалом.

Для решения этой проблемы, Seabed 2030 создает рабочую группу с целью составления серии программных руководств, включенных в технический документ, которые будут представлены национальным и международным финансовым учреждениям. Цель состоит в том, чтобы содействовать созданию возможностей финансирования программ картографических экспедиций и других новых общественных инициатив, которые поддерживают полное картографирование морского дна к 2030 году.

Данные глубин океана из «чуствительных зон»

Существует несколько регионов Мирового океана, где доступ к батиметрической информации может быть нелегким по причинам, которые могут считаться политическими (экономическими), например, районы, где существуют споры о территориальных водах стран или границах исключительных экономических зон (ИЭЗ).

В других международных регионах океана оффшорная нефтегазовая отрасль может не захотеть делиться батиметрическими данными, собранными для целей разведки подводных полезных ископаеммых в силу конкурентных причин и / или конфиденциальности клиентов.

Кроме того, глубина и рельеф дна океана в некоторых странах считаются важными в  их военно-стратегического значении, и поэтому данные батиметрии с высоким разрешением классифицируются и доступ к ним ограничивается национальным законодательством.

Все это представляет собой серьезные проблемы для Seabed 2030, и создание потенциала будет иметь решающее значение для их решений.

Международная сеть ученых из программы Nippon Foundation-GEBCO для аспирантов по океанической батиметрии, организованная Университетом Нью-Хэмпшира, США, станет важным ресурсом для решения этой проблемы.

Эта программа, которая началась в 2004 году, разработала сеть из более чем 78 студентов со всего мира, которые будут важными сторонниками Seabed 2030, особенно когда они перейдут на работу на руководящие должности в своих национальных и академических организациях.

Предоставление информационно-пропагандистских материалов и четких сообщений будет важно для содействия их усилиям. Мы ожидаем, что по мере внесения большего количества данных в проект «Морское дно 2030», его продукты будут широко распространены и признаны, будет возрастать готовность новых групп к предоставлению данных.

Критическим аспектом стратегии является создание ранних сторонников проекта, которые помогут создать системы, процессы, обмен сообщениями и давление со стороны соратников, которые помогут и побудят других в конечном итоге следовать целям проекта.